B. Becker, Frank H. Reichel, D. Bachmann, R. Schinke
{"title":"High groundwater levels: Processes, consequences, and management","authors":"B. Becker, Frank H. Reichel, D. Bachmann, R. Schinke","doi":"10.1002/wat2.1605","DOIUrl":null,"url":null,"abstract":"In recent years, the issue of high groundwater levels has caught attention. Unfavorable consequences of high groundwater levels are especially damage to buildings, infrastructure, and the environment. Processes that lead to high groundwater levels are hydrological (heavy or extended rainfall and flood events), or anthropogenic (reduced groundwater extractions, interaction with sewer networks, hydraulic engineering measures, structural interventions in the water balance, and mining activities). Several different map products have been prepared for the information of inhabitants and for planning purposes, and also methods for damage and risk analysis related to high groundwater levels have been developed. Groundwater management measures and structural measures are available to reduce the risk related to high groundwater levels. An operational management system could be combined from existing components, but operational forecasting systems for high groundwater levels are—different to flood forecasting systems—not yet common practice. A better understanding of the processes and the development of integrated approaches for modeling, design, planning, forecasting, and warning, as well as improvement of interdisciplinary collaboration between different organizations, are recommendations for the future.","PeriodicalId":23774,"journal":{"name":"Wiley Interdisciplinary Reviews: Water","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Water","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/wat2.1605","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
In recent years, the issue of high groundwater levels has caught attention. Unfavorable consequences of high groundwater levels are especially damage to buildings, infrastructure, and the environment. Processes that lead to high groundwater levels are hydrological (heavy or extended rainfall and flood events), or anthropogenic (reduced groundwater extractions, interaction with sewer networks, hydraulic engineering measures, structural interventions in the water balance, and mining activities). Several different map products have been prepared for the information of inhabitants and for planning purposes, and also methods for damage and risk analysis related to high groundwater levels have been developed. Groundwater management measures and structural measures are available to reduce the risk related to high groundwater levels. An operational management system could be combined from existing components, but operational forecasting systems for high groundwater levels are—different to flood forecasting systems—not yet common practice. A better understanding of the processes and the development of integrated approaches for modeling, design, planning, forecasting, and warning, as well as improvement of interdisciplinary collaboration between different organizations, are recommendations for the future.
期刊介绍:
The WIREs series is truly unique, blending the best aspects of encyclopedic reference works and review journals into a dynamic online format. These remarkable resources foster a research culture that transcends disciplinary boundaries, all while upholding the utmost scientific and presentation excellence. However, they go beyond traditional publications and are, in essence, ever-evolving databases of the latest cutting-edge reviews.