A longitudinal data analysis approach for sensory shelf life estimation

Iliana M. Paternina-Ortega, E. Castaño‐Tostado, M. Santana-Cibrian
{"title":"A longitudinal data analysis approach for sensory shelf life estimation","authors":"Iliana M. Paternina-Ortega, E. Castaño‐Tostado, M. Santana-Cibrian","doi":"10.1080/23737484.2023.2220158","DOIUrl":null,"url":null,"abstract":"Abstract Shelf life of a food product is a time threshold that determines when it no longer retains its quality. It can be estimated using data coming from sensory experiments where potential consumers taste aged portions of the product and state whether they will consume the product or not. The raw data obtained from the experiment consist of a binary sequence for each assessor. The standard approach to analyze this type of data is based on reliability theory and requires the coding of the raw data into censored intervals. This paper discusses how the aforementioned coding yields a loss of information and low coverage of confidence intervals. Furthermore, the paper introduces an alternative methodology to estimate shelf life based on longitudinal data theory. This methodology prevents loss of information, quantifies the effect of inconsistent responses, explicitly incorporates and diagnoses the correlation structure of the consumer’s responses, and provides an easier interpretation of the results for the final user. These features are shown using real data coming from sensory experiments.","PeriodicalId":36561,"journal":{"name":"Communications in Statistics Case Studies Data Analysis and Applications","volume":"2 1","pages":"287 - 301"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Statistics Case Studies Data Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23737484.2023.2220158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Shelf life of a food product is a time threshold that determines when it no longer retains its quality. It can be estimated using data coming from sensory experiments where potential consumers taste aged portions of the product and state whether they will consume the product or not. The raw data obtained from the experiment consist of a binary sequence for each assessor. The standard approach to analyze this type of data is based on reliability theory and requires the coding of the raw data into censored intervals. This paper discusses how the aforementioned coding yields a loss of information and low coverage of confidence intervals. Furthermore, the paper introduces an alternative methodology to estimate shelf life based on longitudinal data theory. This methodology prevents loss of information, quantifies the effect of inconsistent responses, explicitly incorporates and diagnoses the correlation structure of the consumer’s responses, and provides an easier interpretation of the results for the final user. These features are shown using real data coming from sensory experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
感官货架期估计的纵向数据分析方法
食品的保质期是确定食品不再保持其质量的时间阈值。它可以通过来自感官实验的数据来估计,在这些实验中,潜在的消费者品尝了产品的陈年部分,并说明他们是否会消费该产品。从实验中获得的原始数据由每个评估者的二值序列组成。分析这类数据的标准方法是基于可靠性理论,并要求将原始数据编码为截尾区间。本文讨论了上述编码如何产生信息丢失和低置信区间覆盖率。此外,本文还介绍了一种基于纵向数据理论估计货架寿命的替代方法。这种方法防止了信息的丢失,量化了不一致反应的影响,明确地结合和诊断了消费者反应的相关结构,并为最终用户提供了更容易的结果解释。这些特征是用来自感官实验的真实数据来显示的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
29
期刊最新文献
The reciprocal elastic net Detection of influential observations in high-dimensional survival data Small area estimation of trends in household living standards in Uganda using a GMANOVA-MANOVA model and repeated surveys Applications of a new loss and cost-based process capability index to electronic industries A methodological framework for imputing missing spatial data at an aggregate level and guaranteeing data privacy: the AFFINITY method; implementation in the context of the official spatial Greek census data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1