Abnormalities in higher cortical visual processing

B. Turgut, Feyza Çaliş Karanfil, Fatos Altun Turgut
{"title":"Abnormalities in higher cortical visual processing","authors":"B. Turgut, Feyza Çaliş Karanfil, Fatos Altun Turgut","doi":"10.15406/aovs.2018.08.00303","DOIUrl":null,"url":null,"abstract":"Sixty percent of the human brain is formed by visual pathways and high visual centers. Thirty visual centers work normally in concordance with systematic and constant communication with each other. Visual cortical areas include primary and secondary areas. Normal visual processing includes the signalization and neuronal processing initiated from the retina through the lateral geniculate body to the striate cortex.1,2 Visual cortical areas include Broadman-17 (primary visual cortex, area striata, visual area V1) area related to shape and size of the objects in striate cortex at lobus occipitalis; Broadman-18 (area parastriata, prestriate cortex, visual area V2) area related to the analysis of object motion in parastriate cortex at lobus occipitalis; Broadman-19 associated with visual area V3 in posterior parietal lobe related to visual integration and cortical color vision; V4 and V5 areas in superior temporal sulcus, related to motion perception (M cells) input, direction and depth perception; visual area V6 in parietal cortex associated with extra-personal perception.2,3 Lesions in visual areas 18 and 19 are associated with visual agnosia. The injury in left may be associated with pure alexia. Defects in the posterior parietal cortex cause optic ataxia while the damage to the medial supero-temporal cortex and medial temporal visual cortex results in loss of visual motion perception (akinetopsia) in different directions. The damage to the inferotemporal cortex causes visual agnosia. Damage to V4 results in loss of color vision, achromatopsia, while damage to V6 causes an inability to distinguish two-dimensional patterns.4–6","PeriodicalId":90420,"journal":{"name":"Advances in ophthalmology & visual system","volume":"1 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in ophthalmology & visual system","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15406/aovs.2018.08.00303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Sixty percent of the human brain is formed by visual pathways and high visual centers. Thirty visual centers work normally in concordance with systematic and constant communication with each other. Visual cortical areas include primary and secondary areas. Normal visual processing includes the signalization and neuronal processing initiated from the retina through the lateral geniculate body to the striate cortex.1,2 Visual cortical areas include Broadman-17 (primary visual cortex, area striata, visual area V1) area related to shape and size of the objects in striate cortex at lobus occipitalis; Broadman-18 (area parastriata, prestriate cortex, visual area V2) area related to the analysis of object motion in parastriate cortex at lobus occipitalis; Broadman-19 associated with visual area V3 in posterior parietal lobe related to visual integration and cortical color vision; V4 and V5 areas in superior temporal sulcus, related to motion perception (M cells) input, direction and depth perception; visual area V6 in parietal cortex associated with extra-personal perception.2,3 Lesions in visual areas 18 and 19 are associated with visual agnosia. The injury in left may be associated with pure alexia. Defects in the posterior parietal cortex cause optic ataxia while the damage to the medial supero-temporal cortex and medial temporal visual cortex results in loss of visual motion perception (akinetopsia) in different directions. The damage to the inferotemporal cortex causes visual agnosia. Damage to V4 results in loss of color vision, achromatopsia, while damage to V6 causes an inability to distinguish two-dimensional patterns.4–6
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高级皮质视觉处理异常
人类大脑的百分之六十是由视觉通路和高级视觉中枢组成的。三十个视觉中心正常工作,彼此之间系统而持续地沟通。视觉皮质区包括主要和次要区域。正常的视觉处理包括从视网膜通过外侧膝状体到纹状皮层的信号和神经元处理。1,2视觉皮质区包括枕叶纹状皮层与物体形状和大小有关的Broadman-17(初级视觉皮层、纹状区、V1视觉区)区;枕叶旁栏状皮层中与物体运动分析相关的Broadman-18(旁栏状区、前栏状皮层、视觉区V2)区;与视觉整合和皮层色觉相关的后顶叶V3视觉区相关的Broadman-19;颞上沟V4和V5区,与运动感知(M细胞)输入、方向和深度感知有关;顶叶皮层V6视觉区与超个人知觉有关。2、3视觉区18和19的病变与视觉失认有关。左侧损伤可能与单纯失读症有关。后顶叶皮层缺损引起视共济失调,内侧颞上皮层和内侧颞视觉皮层损伤导致不同方向的视觉运动知觉丧失(动位失视)。颞下皮层的损伤会导致视觉失认症。V4受损导致色盲,而V6受损导致无法区分二维图案
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolution of penetrating keratoplasty: the three eras, a brief historical review Comparison of post-op quality of vision of spheric IOL and aspheric hydrophilic acrylic yellow tinted intraocular lens implantation following phacoemulsification cataract surgery The detection of COAT’s disease at its early stage and management To evaluate the retinal nerve fiber layer thickness in different types of glaucoma An atypically distributed fleck case with multiple retinal pigment epithelial detachments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1