{"title":"Lysophosphatidic acid augments fibroblast-mediated contraction of released collagen gels.","authors":"T. Mio, Xiangde Liu, M. Toews, S. Rennard","doi":"10.1067/MLC.2002.120650","DOIUrl":null,"url":null,"abstract":"Lysophosphatidic acid (LPA) is a glycerophospholipid released from platelets that has multiple biologic effects. The present study evaluated the potential of LPA to modulate tissue repair and remodeling by modifying human lung fibro-blast-mediated contraction of three-dimensional collagen gels. The contraction of native collagen gels caused by human fetal lung fibroblasts was augmented by LPA in a concentration-dependent manner. The estimated median effective concentration was 3 x 10(-7) mol/L, which was well below the concentrations likely released by platelets in tissues. LPA-augmented contraction was not blocked by pertussis toxin or cholera toxin but was inhibited by inhibition of phospholipase C. Neither calcium mobilization nor protein kinase C appeared to play a role. In contrast, the effect of LPA appeared to depend on a kinase inhibited by staurosporine but not by genistein or GF109203X, suggesting a process that depends on phospholipase C and may involve a novel protein kinase. By modulating fibroblast-mediated remodeling, LPA could play a role in the tissue remodeling that characterizes wound repair.","PeriodicalId":23085,"journal":{"name":"The Journal of laboratory and clinical medicine","volume":"103 1","pages":"20-7"},"PeriodicalIF":0.0000,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of laboratory and clinical medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1067/MLC.2002.120650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
Lysophosphatidic acid (LPA) is a glycerophospholipid released from platelets that has multiple biologic effects. The present study evaluated the potential of LPA to modulate tissue repair and remodeling by modifying human lung fibro-blast-mediated contraction of three-dimensional collagen gels. The contraction of native collagen gels caused by human fetal lung fibroblasts was augmented by LPA in a concentration-dependent manner. The estimated median effective concentration was 3 x 10(-7) mol/L, which was well below the concentrations likely released by platelets in tissues. LPA-augmented contraction was not blocked by pertussis toxin or cholera toxin but was inhibited by inhibition of phospholipase C. Neither calcium mobilization nor protein kinase C appeared to play a role. In contrast, the effect of LPA appeared to depend on a kinase inhibited by staurosporine but not by genistein or GF109203X, suggesting a process that depends on phospholipase C and may involve a novel protein kinase. By modulating fibroblast-mediated remodeling, LPA could play a role in the tissue remodeling that characterizes wound repair.