Nassir A. Abalkhail, P. J. Liyanage, Karsinghe A. N. Upamali, G. Pope, K. Mohanty
{"title":"ASP Flood Application for a High-Temperature, High-Salinity Carbonate Reservoir","authors":"Nassir A. Abalkhail, P. J. Liyanage, Karsinghe A. N. Upamali, G. Pope, K. Mohanty","doi":"10.2118/194948-MS","DOIUrl":null,"url":null,"abstract":"\n The goal of this work was to develop a highly efficient alkaline-surfactant-polymer (ASP) process applicable to a high temperature (~100 °C), high salinity (~60,000 ppm) giant carbonate reservoir with very low surfactant retention, an essential requirement for low chemical cost. Phase behavior tests were conducted with anionic surfactants, alkali, co-solvents, brine, and crude oil to identify chemical formulations with ultra-low IFT under reservoir conditions. Corefloods were first conducted in outcrop carbonate cores and then in reservoir cores. The effluent was analyzed for oil, surfactant, pH, salinity and viscosity. Pressure drop was monitored across 4 sections of the core to monitor front propagation. Surfactant adsorption on carbonate surfaces decreases at high pH. The conventional alkali used for ASP floods of sandstones is sodium carbonate. However, sodium carbonate cannot be used in formations containing anhydrite, which is the case for the target reservoir. For this reason, ammonia, sodium hydroxide and a new organic alkali were studied for this application. Ultralow IFT (~0.001 dynes/cm) was achieved with several ASP formulations using the reservoir oil. Coreflood experiments using both outcrop limestone and carbonate reservoir core were conducted using these alkalis. The coreflood results showed good oil recovery and low surfactant retention.","PeriodicalId":11031,"journal":{"name":"Day 4 Thu, March 21, 2019","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Thu, March 21, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/194948-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
The goal of this work was to develop a highly efficient alkaline-surfactant-polymer (ASP) process applicable to a high temperature (~100 °C), high salinity (~60,000 ppm) giant carbonate reservoir with very low surfactant retention, an essential requirement for low chemical cost. Phase behavior tests were conducted with anionic surfactants, alkali, co-solvents, brine, and crude oil to identify chemical formulations with ultra-low IFT under reservoir conditions. Corefloods were first conducted in outcrop carbonate cores and then in reservoir cores. The effluent was analyzed for oil, surfactant, pH, salinity and viscosity. Pressure drop was monitored across 4 sections of the core to monitor front propagation. Surfactant adsorption on carbonate surfaces decreases at high pH. The conventional alkali used for ASP floods of sandstones is sodium carbonate. However, sodium carbonate cannot be used in formations containing anhydrite, which is the case for the target reservoir. For this reason, ammonia, sodium hydroxide and a new organic alkali were studied for this application. Ultralow IFT (~0.001 dynes/cm) was achieved with several ASP formulations using the reservoir oil. Coreflood experiments using both outcrop limestone and carbonate reservoir core were conducted using these alkalis. The coreflood results showed good oil recovery and low surfactant retention.