Analyzing carbon emissions policies for the Bolivian electric sector

Carlos A.A. Fernandez Vazquez , R.J. Brecha , Miguel H. Fernandez Fuentes
{"title":"Analyzing carbon emissions policies for the Bolivian electric sector","authors":"Carlos A.A. Fernandez Vazquez ,&nbsp;R.J. Brecha ,&nbsp;Miguel H. Fernandez Fuentes","doi":"10.1016/j.rset.2022.100017","DOIUrl":null,"url":null,"abstract":"<div><p>A transition of the Bolivian power sector towards a renewable energy dominated system has been inhibited by a series of laws and policies including heavy subsidies for power generation using domestic natural gas. Within this context, alternative techno-economic scenarios are designed based on key characteristics of the system, and a series of six policy levers are used to analyze impacts on the development of the power sector. The energy-system optimization modeling framework OSeMOSYS is utilized to analyze power sector transition pathways. Techno-economic characteristics and policies are combined to develop bracketing scenarios for the future energy system, contrasting business-as-usual with an ambitious renewable energy policy scenario.</p><p>Results from the analyzed scenarios show that achieving significant reductions of GHG emissions in the Bolivian electric system will heavily depend on:1) reducing the artificial competitiveness of thermal power plants through subsidies, but also a price on carbon emissions; 2) banning high impact power plants (mainly very large hydropower plants); and 3) defining clear long-term objectives for the participation of renewables in the system, starting with objectives in current short-term plans. By examining several scenarios, relative system costs as a function of emissions reductions are determined as well. For high penetration of variable renewable energy, addition of storage will eventually be needed as dispatchable renewable resources are limited.</p></div>","PeriodicalId":101071,"journal":{"name":"Renewable and Sustainable Energy Transition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667095X22000010/pdfft?md5=b5a762088db34e7321218b6d21901c20&pid=1-s2.0-S2667095X22000010-main.pdf","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Transition","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667095X22000010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

A transition of the Bolivian power sector towards a renewable energy dominated system has been inhibited by a series of laws and policies including heavy subsidies for power generation using domestic natural gas. Within this context, alternative techno-economic scenarios are designed based on key characteristics of the system, and a series of six policy levers are used to analyze impacts on the development of the power sector. The energy-system optimization modeling framework OSeMOSYS is utilized to analyze power sector transition pathways. Techno-economic characteristics and policies are combined to develop bracketing scenarios for the future energy system, contrasting business-as-usual with an ambitious renewable energy policy scenario.

Results from the analyzed scenarios show that achieving significant reductions of GHG emissions in the Bolivian electric system will heavily depend on:1) reducing the artificial competitiveness of thermal power plants through subsidies, but also a price on carbon emissions; 2) banning high impact power plants (mainly very large hydropower plants); and 3) defining clear long-term objectives for the participation of renewables in the system, starting with objectives in current short-term plans. By examining several scenarios, relative system costs as a function of emissions reductions are determined as well. For high penetration of variable renewable energy, addition of storage will eventually be needed as dispatchable renewable resources are limited.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分析玻利维亚电力部门的碳排放政策
玻利维亚电力部门向以可再生能源为主的系统过渡受到一系列法律和政策的阻碍,其中包括对使用国内天然气发电的高额补贴。在此背景下,根据该系统的关键特征设计了可替代的技术经济情景,并使用一系列六个政策杠杆来分析对电力部门发展的影响。利用能源系统优化建模框架OSeMOSYS对电力部门转型路径进行分析。技术经济特征和政策相结合,为未来的能源系统制定了一揽子方案,将一切照旧与雄心勃勃的可再生能源政策方案进行了对比。分析情景的结果表明,玻利维亚电力系统实现温室气体排放的显著减少将在很大程度上取决于:1)通过补贴降低火电厂的人为竞争力,但也要对碳排放进行定价;2)禁止高影响电厂(主要是超大型水电站);3)从当前短期计划的目标开始,为可再生能源参与系统制定明确的长期目标。通过对几种情景的考察,还确定了作为减排函数的相对系统成本。对于可变可再生能源的高渗透,由于可调度的可再生资源有限,最终将需要增加存储。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.50
自引率
0.00%
发文量
0
期刊最新文献
Scenarios for wind capacity deployment in Colombia by 2050: A perspective from system dynamics modeling Optimizing the use of limited amounts of hydrogen in existing combined heat and power plants Comprehensive and open model structure for the design of future energy systems with sector coupling Strengthening energy system resilience planning under uncertainty by minimizing regret The political economy of mini-grid electricity development and innovation in Kenya
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1