Ryo Kozono, Sanji Yoon, Jianbo Liang, N. Shigekawa
{"title":"GaAs/Si Double-Junction Cells Fabricated by Sacrificial Layer Etching of Directly-Bonded III-V/Si Junctions","authors":"Ryo Kozono, Sanji Yoon, Jianbo Liang, N. Shigekawa","doi":"10.1109/PVSC40753.2019.8980757","DOIUrl":null,"url":null,"abstract":"A GaAs/Si double-junction cell is fabricated by directly bonding a GaAs single-junction cell structure grown on a GaAs (001) substrate to a n-on-p Si sub-cell and separating the GaAs substrate using a sacrificial layer etching. Before the sacrificial layer etching, the III-V/Si junction is annealed at 300 ℃ for 1 hour so as to recrystallize the interface and achieve an enough bonding strength based on the results of hard X-ray photoemission spectroscopy. We obtain a bonding yield of ~80% after the sacrificial layer etching. We confirm that the fabricated double-junction cell normally operates by measuring its current-voltage and spectral-response characteristics.","PeriodicalId":6749,"journal":{"name":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","volume":"12 1","pages":"1018-1020"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC40753.2019.8980757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A GaAs/Si double-junction cell is fabricated by directly bonding a GaAs single-junction cell structure grown on a GaAs (001) substrate to a n-on-p Si sub-cell and separating the GaAs substrate using a sacrificial layer etching. Before the sacrificial layer etching, the III-V/Si junction is annealed at 300 ℃ for 1 hour so as to recrystallize the interface and achieve an enough bonding strength based on the results of hard X-ray photoemission spectroscopy. We obtain a bonding yield of ~80% after the sacrificial layer etching. We confirm that the fabricated double-junction cell normally operates by measuring its current-voltage and spectral-response characteristics.