The Effect of Composition, Geometry and a Novel Tool Design on Metal Recovery During Aluminum Process Scrap Remelting

IF 1 Q4 ENGINEERING, MANUFACTURING Journal of Micro and Nano-Manufacturing Pub Date : 2022-06-27 DOI:10.1115/msec2022-84900
Jiankan Liao, Ashvin Sharma, Daniel Cooper
{"title":"The Effect of Composition, Geometry and a Novel Tool Design on Metal Recovery During Aluminum Process Scrap Remelting","authors":"Jiankan Liao, Ashvin Sharma, Daniel Cooper","doi":"10.1115/msec2022-84900","DOIUrl":null,"url":null,"abstract":"\n Aluminum recycling requires less energy and releases fewer greenhouse emissions than primary production from naturally occurring ores; however, a significant fraction of the furnace charge is lost to dross generation during remelting. In this article, we use an electric furnace to remelt clean aluminum sheet and machining chip process scrap of varying thickness, surface roughness, and composition. The metal recovery results show that magnesium-containing alloys (e.g., 2xxx, 5xxx, 6xxx, and 7xxx alloys) accelerate dross generation and lower metal recovery. This is likely due to magnesium having a higher reactivity than aluminum, with the magnesium content detected in the dross (using Energy-dispersive X-ray spectroscopy) greater than the magnesium content in the alloy. Metal recovery decreased when remelting thinner scrap. Metal recovery for clean machining chips was lower than for aluminum sheet scrap of the same thickness and composition. This disparity was likely due to the greater surface roughness of the machining chips, which will increase the surface area for oxidation and potentially the wetting of the oxide by the Wenzel effect. The decreased metal recovery for scratch brushed aluminum sheets confirmed the effect of surface roughness. Subsequently, a “squeeze” cutting tool was designed and manufactured, which smooths the otherwise rough back-side of the machining chips. These smoother machining chips exhibited increased metal recovery during remelting.","PeriodicalId":45459,"journal":{"name":"Journal of Micro and Nano-Manufacturing","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro and Nano-Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/msec2022-84900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Aluminum recycling requires less energy and releases fewer greenhouse emissions than primary production from naturally occurring ores; however, a significant fraction of the furnace charge is lost to dross generation during remelting. In this article, we use an electric furnace to remelt clean aluminum sheet and machining chip process scrap of varying thickness, surface roughness, and composition. The metal recovery results show that magnesium-containing alloys (e.g., 2xxx, 5xxx, 6xxx, and 7xxx alloys) accelerate dross generation and lower metal recovery. This is likely due to magnesium having a higher reactivity than aluminum, with the magnesium content detected in the dross (using Energy-dispersive X-ray spectroscopy) greater than the magnesium content in the alloy. Metal recovery decreased when remelting thinner scrap. Metal recovery for clean machining chips was lower than for aluminum sheet scrap of the same thickness and composition. This disparity was likely due to the greater surface roughness of the machining chips, which will increase the surface area for oxidation and potentially the wetting of the oxide by the Wenzel effect. The decreased metal recovery for scratch brushed aluminum sheets confirmed the effect of surface roughness. Subsequently, a “squeeze” cutting tool was designed and manufactured, which smooths the otherwise rough back-side of the machining chips. These smoother machining chips exhibited increased metal recovery during remelting.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铝加工废料重熔过程中成分、几何形状和新型刀具设计对金属回收的影响
与天然矿石的初级生产相比,铝的回收需要更少的能源,释放更少的温室气体排放;然而,在重熔过程中,有很大一部分炉料因产生渣滓而损失。在本文中,我们使用电炉重熔干净的铝板和加工屑过程废料不同的厚度,表面粗糙度,和成分。金属回收率结果表明,含镁合金(如2xxx、5xxx、6xxx和7xxx合金)加速了废渣的生成,降低了金属回收率。这可能是由于镁比铝具有更高的反应活性,在渣滓中检测到的镁含量(使用能量色散x射线光谱)大于合金中的镁含量。当重熔较薄的废料时,金属回收率降低。清洁切削屑的金属回收率低于相同厚度和成分的铝板废料。这种差异可能是由于加工切屑的表面粗糙度较大,这将增加氧化的表面积,并可能通过温泽尔效应使氧化物湿润。划痕拉丝铝板金属回收率下降,证实了表面粗糙度的影响。随后,设计并制造了一种“挤压”刀具,使加工切屑的粗糙背面变得光滑。这些更光滑的加工芯片在重熔过程中表现出更高的金属回收率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Micro and Nano-Manufacturing
Journal of Micro and Nano-Manufacturing ENGINEERING, MANUFACTURING-
CiteScore
2.70
自引率
0.00%
发文量
12
期刊介绍: The Journal of Micro and Nano-Manufacturing provides a forum for the rapid dissemination of original theoretical and applied research in the areas of micro- and nano-manufacturing that are related to process innovation, accuracy, and precision, throughput enhancement, material utilization, compact equipment development, environmental and life-cycle analysis, and predictive modeling of manufacturing processes with feature sizes less than one hundred micrometers. Papers addressing special needs in emerging areas, such as biomedical devices, drug manufacturing, water and energy, are also encouraged. Areas of interest including, but not limited to: Unit micro- and nano-manufacturing processes; Hybrid manufacturing processes combining bottom-up and top-down processes; Hybrid manufacturing processes utilizing various energy sources (optical, mechanical, electrical, solar, etc.) to achieve multi-scale features and resolution; High-throughput micro- and nano-manufacturing processes; Equipment development; Predictive modeling and simulation of materials and/or systems enabling point-of-need or scaled-up micro- and nano-manufacturing; Metrology at the micro- and nano-scales over large areas; Sensors and sensor integration; Design algorithms for multi-scale manufacturing; Life cycle analysis; Logistics and material handling related to micro- and nano-manufacturing.
期刊最新文献
Transfer Learning For Predictive Quality In Laser-Induced Plasma Micro-Machining Simultaneous Micro- and Nanoscale Silicon Fabrication by Metal-Assisted Chemical Etch Thermodynamic Evaluation of Electroosmotic Peristaltic Pumping for Shear-Thinning Fluid Flow Electric-field and Mechanical Vibration-assisted Atomic Force Microscope (AFM)-based Nanopatterning Fabrication of Bioinspired Micro/nano-textured Surfaces Through Scalable Roll Coating Manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1