Design Principles for Noncentrosymmetric Materials

IF 10.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Annual Review of Materials Research Pub Date : 2023-07-03 DOI:10.1146/annurev-matsci-080921-110002
Xu Huai, T. Tran
{"title":"Design Principles for Noncentrosymmetric Materials","authors":"Xu Huai, T. Tran","doi":"10.1146/annurev-matsci-080921-110002","DOIUrl":null,"url":null,"abstract":"Noncentrosymmetric (NCS) materials feature an exciting array of functionalities such as nonlinear optical (NLO) responses and topological spin textures (skyrmions). While NLO materials and magnetic skyrmions display two different sets of physical properties, their design strategies are deeply connected in terms of atomic-scale precision, structural customization, and electronic tunability. Despite impressive progress in studying these systems separately, a joint road map for navigating the chemical principles for NCS materials remains elusive. This review unites two subtopics of NCS systems, NLO materials and magnetic skyrmions, offering a multifaceted narrative of how to translate the often-abstract fundamentals to the targeted functionalities while inviting innovative approaches from the community. We outline the design principles central to the desired properties by exemplifying relevant examples in the field. We supplement materials chemistry with pertinent electronic structures to demonstrate the power of the fundamentals to create systems integration relevant to foreseeable societal impacts in frequency-doubling instrumentation and spin-based electronics.","PeriodicalId":8055,"journal":{"name":"Annual Review of Materials Research","volume":"15 1","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1146/annurev-matsci-080921-110002","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Noncentrosymmetric (NCS) materials feature an exciting array of functionalities such as nonlinear optical (NLO) responses and topological spin textures (skyrmions). While NLO materials and magnetic skyrmions display two different sets of physical properties, their design strategies are deeply connected in terms of atomic-scale precision, structural customization, and electronic tunability. Despite impressive progress in studying these systems separately, a joint road map for navigating the chemical principles for NCS materials remains elusive. This review unites two subtopics of NCS systems, NLO materials and magnetic skyrmions, offering a multifaceted narrative of how to translate the often-abstract fundamentals to the targeted functionalities while inviting innovative approaches from the community. We outline the design principles central to the desired properties by exemplifying relevant examples in the field. We supplement materials chemistry with pertinent electronic structures to demonstrate the power of the fundamentals to create systems integration relevant to foreseeable societal impacts in frequency-doubling instrumentation and spin-based electronics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非中心对称材料的设计原则
非中心对称(NCS)材料具有一系列令人兴奋的功能,如非线性光学(NLO)响应和拓扑自旋织构(skyrmions)。虽然NLO材料和磁性skyrmions表现出两种不同的物理性质,但它们的设计策略在原子尺度精度、结构定制和电子可调性方面有着密切的联系。尽管在分别研究这些系统方面取得了令人印象深刻的进展,但导航NCS材料化学原理的联合路线图仍然难以捉摸。本综述结合了NCS系统的两个子主题,NLO材料和磁性天空,提供了如何将通常抽象的基本原理转化为目标功能的多方面叙述,同时邀请来自社区的创新方法。我们通过举例说明该领域的相关示例,概述了期望属性的核心设计原则。我们用相关的电子结构来补充材料化学,以展示基础知识的力量,以创建与倍频仪器和自旋电子学中可预见的社会影响相关的系统集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual Review of Materials Research
Annual Review of Materials Research 工程技术-材料科学:综合
CiteScore
17.70
自引率
1.00%
发文量
21
期刊介绍: The Annual Review of Materials Research, published since 1971, is a journal that covers significant developments in the field of materials research. It includes original methodologies, materials phenomena, material systems, and special keynote topics. The current volume of the journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license. The journal defines its scope as encompassing significant developments in materials science, including methodologies for studying materials and materials phenomena. It is indexed and abstracted in various databases, such as Scopus, Science Citation Index Expanded, Civil Engineering Abstracts, INSPEC, and Academic Search, among others.
期刊最新文献
Chemical Botany: Bottlebrush Polymers in Materials Science Circular Steel for Fast Decarbonization: Thermodynamics, Kinetics, and Microstructure Behind Upcycling Scrap into High-Performance Sheet Steel Structural Chirality and Electronic Chirality in Quantum Materials Degradation Processes in Current Commercialized Li-Ion Batteries and Strategies to Mitigate Them Oxygen Redox in Alkali-Ion Battery Cathodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1