In situ suspension polymerization of vinyl chloride/3-(trimethoxysilyl) propyl methacrylate (MPTMS) intercalated Mg-Al-layered double hydroxide: II. Morphological, thermal properties and diffusion behavior

Reza Mohammadi Berenjegani, R. Darvishi, Ghasem Payam
{"title":"In situ suspension polymerization of vinyl chloride/3-(trimethoxysilyl) propyl methacrylate (MPTMS) intercalated Mg-Al-layered double hydroxide: II. Morphological, thermal properties and diffusion behavior","authors":"Reza Mohammadi Berenjegani, R. Darvishi, Ghasem Payam","doi":"10.1177/09673911231181842","DOIUrl":null,"url":null,"abstract":"A series of PVC composites were produced using an in-situ suspension polymerization method with an optimal amount of 5 wt% of MgAl(NO3) layered double hydroxide (LDH) or LDH-MPTMS, which is MPTMS-intercalated Mg-Al LDH. The physical, mechanical, and thermal properties of the composite samples were compared to pure PVC. Results from the Brabender® plastograph showed that the PVC grains produced with LDH-MPTMS had a longer thermal stability time and shorter fusion time. The addition of LDH-MPTMS nanosheets increased the gelation degree of PVC particles, resulting in a lower temperature/time requirement for processing. The thermal stability of the composite material was confirmed through a standard dehydrochlorination test, which demonstrated a 40% improvement in dehydrochlorination rate compared to pure PVC. This improvement was 12% higher than that observed in the PVC/LDH composite. TGA curves indicated a significant increase in the 5 and 50% weight loss temperatures of PVC resins with the addition of 5wt% LDH or LDH-MPTMS, with an approximate growth of 11°C. The glassy state storage modulus and Tg of the PVC/LDH-MPTMS composite were higher than those of pure PVC and the PVC/LDH composite. Mechanical analysis revealed that the PVC/LDH-MPTMS composites exhibited greater stiffness and toughness, as well as significantly higher Charpy notched impact strength, tensile strength, and Young’s modulus compared to both the PVC/LDH composite and pure PVC.","PeriodicalId":20417,"journal":{"name":"Polymers and Polymer Composites","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers and Polymer Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09673911231181842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A series of PVC composites were produced using an in-situ suspension polymerization method with an optimal amount of 5 wt% of MgAl(NO3) layered double hydroxide (LDH) or LDH-MPTMS, which is MPTMS-intercalated Mg-Al LDH. The physical, mechanical, and thermal properties of the composite samples were compared to pure PVC. Results from the Brabender® plastograph showed that the PVC grains produced with LDH-MPTMS had a longer thermal stability time and shorter fusion time. The addition of LDH-MPTMS nanosheets increased the gelation degree of PVC particles, resulting in a lower temperature/time requirement for processing. The thermal stability of the composite material was confirmed through a standard dehydrochlorination test, which demonstrated a 40% improvement in dehydrochlorination rate compared to pure PVC. This improvement was 12% higher than that observed in the PVC/LDH composite. TGA curves indicated a significant increase in the 5 and 50% weight loss temperatures of PVC resins with the addition of 5wt% LDH or LDH-MPTMS, with an approximate growth of 11°C. The glassy state storage modulus and Tg of the PVC/LDH-MPTMS composite were higher than those of pure PVC and the PVC/LDH composite. Mechanical analysis revealed that the PVC/LDH-MPTMS composites exhibited greater stiffness and toughness, as well as significantly higher Charpy notched impact strength, tensile strength, and Young’s modulus compared to both the PVC/LDH composite and pure PVC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氯乙烯/3-(三甲氧基硅基)甲基丙烯酸丙酯(MPTMS)插层镁铝双氢氧化物的原位悬浮聚合。形态、热性能和扩散行为
采用原位悬浮聚合法制备了一系列PVC复合材料,最佳用量为5wt %的MgAl(NO3)层状双氢氧化物(LDH)或LDH- mptms,即mptms插层Mg-Al LDH。将复合材料样品的物理、机械和热性能与纯PVC进行了比较。Brabender®塑形仪的结果表明,用LDH-MPTMS制备的PVC颗粒具有较长的热稳定时间和较短的熔化时间。LDH-MPTMS纳米片的加入提高了PVC颗粒的胶凝程度,从而降低了加工的温度/时间要求。通过标准的脱氯化氢试验证实了复合材料的热稳定性,与纯PVC相比,脱氯化氢率提高了40%。这种改善比PVC/LDH复合材料高出12%。TGA曲线表明,添加5wt% LDH或LDH- mptms时,PVC树脂的5%和50%失重温度显著增加,大约增长11°C。PVC/LDH- mptms复合材料的玻璃态存储模量和Tg均高于纯PVC和PVC/LDH复合材料。力学分析表明,与PVC/LDH复合材料和纯PVC相比,PVC/LDH- mptms复合材料具有更高的刚度和韧性,以及更高的Charpy缺口冲击强度、抗拉强度和杨氏模量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling and characterising FFF process of semi-crystalline polymers: Warpage formation and mechanism analysis Machine learning non-isothermal study of the blade coating process (NIS-BCP) using non-Newtonian nanofluid with magnetohydrodynamic (MHD) and slip effects Performance of polyurethane and polyurethane nanocomposites modified by graphene, carbon nanotubes, and fumed silica in dry and wet environments Effect of hybrid weaving patterns on mechanical performance of 3D woven structures Investigation of effects of bis(2-hydroxyethyl) terephthalate derived from glycolysis of polyethylene terephthalate on the properties of flexible polyurethane foam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1