{"title":"Design of a Free Piston Stirling Engine Power Generator","authors":"Ruijie Li, Yuan Gao, Koji Yanaga, Songgang Qiu","doi":"10.1115/imece2019-10403","DOIUrl":null,"url":null,"abstract":"\n Free Piston Stirling Engine is an external combustion engine, which can use diversified energy resources, such as solar energy, nuclear energy, geothermal energy, biomass, industrial waste heat etc. and is suitable for the remote area power generation due to the advantage of robustness, durability, reliability, and high efficiency. In this work, a Free Piston Stirling Engine has been designed based on the numerical simulation results and previous experimental experience. Direct Metal Laser Sintering method has been adopted for the manufacturing of the key components including the displacer cap, displacer body, piston housing, cold heat exchanger, and regenerator. One dimension analysis using Sage software has been conducted. The designed engine has a power output of 65W with the hot and cold end temperature is 650°C and 80°C respectively, and charge pressure is 1.35 MPa. Finite Element Method has been used to analyze the structural stress of the engine, which is operated at the high temperature and high pressure, to determine if it is able to tolerate the operating condition designed by the Sage according to the Section VIII Division 2 of the ASME Boiler and Pressure Vessel (BPV) Code.\n In addition, Computational Fluid Dynamics (CFD) method has been used to investigate the flow distribution in heat exchangers (heat acceptor, regenerator, and heat rejecter), as the heat exchanger performance affect the engine performance greatly. Considering the large mesh number, a quarter of the heat exchangers have been investigated, in order to reduce the mesh numbers and accelerate the calculation speed.","PeriodicalId":23629,"journal":{"name":"Volume 6: Energy","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6: Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2019-10403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Free Piston Stirling Engine is an external combustion engine, which can use diversified energy resources, such as solar energy, nuclear energy, geothermal energy, biomass, industrial waste heat etc. and is suitable for the remote area power generation due to the advantage of robustness, durability, reliability, and high efficiency. In this work, a Free Piston Stirling Engine has been designed based on the numerical simulation results and previous experimental experience. Direct Metal Laser Sintering method has been adopted for the manufacturing of the key components including the displacer cap, displacer body, piston housing, cold heat exchanger, and regenerator. One dimension analysis using Sage software has been conducted. The designed engine has a power output of 65W with the hot and cold end temperature is 650°C and 80°C respectively, and charge pressure is 1.35 MPa. Finite Element Method has been used to analyze the structural stress of the engine, which is operated at the high temperature and high pressure, to determine if it is able to tolerate the operating condition designed by the Sage according to the Section VIII Division 2 of the ASME Boiler and Pressure Vessel (BPV) Code.
In addition, Computational Fluid Dynamics (CFD) method has been used to investigate the flow distribution in heat exchangers (heat acceptor, regenerator, and heat rejecter), as the heat exchanger performance affect the engine performance greatly. Considering the large mesh number, a quarter of the heat exchangers have been investigated, in order to reduce the mesh numbers and accelerate the calculation speed.