Intelligent Detection System Enabled Attack Probability Using Markov Chain in Aerial Networks

I. Khan, Asrin Abdollahi, Ryan Alturki, M. Alshehri, M. Ikram, Hasan J. Alyamani, Shahzad Khan
{"title":"Intelligent Detection System Enabled Attack Probability Using Markov Chain in Aerial Networks","authors":"I. Khan, Asrin Abdollahi, Ryan Alturki, M. Alshehri, M. Ikram, Hasan J. Alyamani, Shahzad Khan","doi":"10.1155/2021/1542657","DOIUrl":null,"url":null,"abstract":"The Internet of Things (IoT) plays an important role to connect people, data, processes, and things. From linked supply chains to big data produced by a large number of IoT devices to industrial control systems where cybersecurity has become a critical problem in IoT-powered systems. Denial of Service (DoS), distributed denial of service (DDoS), and ping of death attacks are significant threats to flying networks. This paper presents an intrusion detection system (IDS) based on attack probability using the Markov chain to detect flooding attacks. While the paper includes buffer queue length by using queuing theory concept to evaluate the network safety. Also, the network scenario will change due to the dynamic nature of flying vehicles. Simulation describes the queue length when the ground station is under attack. The proposed IDS utilizes the optimal threshold to make a tradeoff between false positive and false negative states with Markov binomial and Markov chain distribution stochastic models. However, at each time slot, the results demonstrate maintaining queue length in normal mode with less packet loss and high attack detection.","PeriodicalId":23995,"journal":{"name":"Wirel. Commun. Mob. Comput.","volume":"1 1","pages":"1542657:1-1542657:9"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wirel. Commun. Mob. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/1542657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The Internet of Things (IoT) plays an important role to connect people, data, processes, and things. From linked supply chains to big data produced by a large number of IoT devices to industrial control systems where cybersecurity has become a critical problem in IoT-powered systems. Denial of Service (DoS), distributed denial of service (DDoS), and ping of death attacks are significant threats to flying networks. This paper presents an intrusion detection system (IDS) based on attack probability using the Markov chain to detect flooding attacks. While the paper includes buffer queue length by using queuing theory concept to evaluate the network safety. Also, the network scenario will change due to the dynamic nature of flying vehicles. Simulation describes the queue length when the ground station is under attack. The proposed IDS utilizes the optimal threshold to make a tradeoff between false positive and false negative states with Markov binomial and Markov chain distribution stochastic models. However, at each time slot, the results demonstrate maintaining queue length in normal mode with less packet loss and high attack detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用马尔可夫链实现空中网络攻击概率的智能检测系统
物联网(IoT)在连接人、数据、流程和事物方面发挥着重要作用。从互联供应链到大量物联网设备产生的大数据,再到工业控制系统,网络安全已成为物联网驱动系统的关键问题。拒绝服务(DoS)、分布式拒绝服务(DDoS)和ping死亡攻击是飞行网络面临的重大威胁。提出了一种基于攻击概率的入侵检测系统,利用马尔可夫链对洪水攻击进行检测。同时利用排队论的概念,将缓冲队列长度纳入到网络安全评价中。此外,由于飞行器的动态性,网络场景也会发生变化。仿真描述了地面站受到攻击时的排队长度。所提出的IDS利用最优阈值在马尔可夫二项分布和马尔可夫链分布随机模型中进行假阳性和假阴性状态的权衡。然而,在每个时隙,结果表明在正常模式下保持队列长度,丢包少,攻击检测率高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AI-Empowered Propagation Prediction and Optimization for Reconfigurable Wireless Networks C SVM Classification and KNN Techniques for Cyber Crime Detection A Secure and Efficient Energy Trading Model Using Blockchain for a 5G-Deployed Smart Community Fusion Deep Learning and Machine Learning for Heterogeneous Military Entity Recognition Influence of Embedded Microprocessor Wireless Communication and Computer Vision in Wushu Competition Referees' Decision Support
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1