Improving Cancer Epigenetic Therapy; A Glimpse of NRF2

Tahereh Kashkoulinejad-Kouhi
{"title":"Improving Cancer Epigenetic Therapy; A Glimpse of NRF2","authors":"Tahereh Kashkoulinejad-Kouhi","doi":"10.33696/signaling.4.095","DOIUrl":null,"url":null,"abstract":"One of the mechanisms used by epigenetic therapy is the elevation of host cell-derived double stranded RNA (dsRNA) baseline levels through overexpression of genomic repetitive elements especially Alu retroelements. The dsRNAs trigger immunogenic responses since immune system cannot distinguish between endogenous and exogenous dsRNAs derived from viral infections; hence called “Viral mimicry response”. These dsRNAs are recognized by pattern recognition receptors (PRRs) such as MDA-5 which further induce inflammatory responses through interferon secretion. However, the response is limited through the function of some editing enzymes such as ADAR1 which destabilizes the formation of dsRNAs and renders the therapy less efficient through attenuating interferon secretion by immune cells. Since, some cancer cells can survive even after ADAR1 inhibition, it is speculated that there might be other mechanism which contribute to dsRNA destabilization. Since dsRNA formation derived from retroelement transcripts mimics viral infections, we tried to review the mechanistic approaches applied during host-pathogen interaction to highlight a possible candidate which might be cogitable for further investigations in epigenetic therapy. dsRNAs produced by RNA viruses are sensed by PRRs and activate nuclear factor erythroid 2 p45-related factor 2 (NRF2) which further downregulates STING protein and attenuates IFN release. RNA viruses such as SARS-CoV-2 have the potential to impair NRF2 signaling and eliminate its inhibitory effect from STING, leading to excessive release of IFNs and destroy pulmonary cells through cytokine release storm (CRS). Here, we briefly explain that NRF2, in a very downstream side of anti-viral response, might be a potential candidate target in combination with epigenetic therapy to circumvent the limitations in cancer epigenetic therapy.","PeriodicalId":73645,"journal":{"name":"Journal of cellular signaling","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cellular signaling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33696/signaling.4.095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the mechanisms used by epigenetic therapy is the elevation of host cell-derived double stranded RNA (dsRNA) baseline levels through overexpression of genomic repetitive elements especially Alu retroelements. The dsRNAs trigger immunogenic responses since immune system cannot distinguish between endogenous and exogenous dsRNAs derived from viral infections; hence called “Viral mimicry response”. These dsRNAs are recognized by pattern recognition receptors (PRRs) such as MDA-5 which further induce inflammatory responses through interferon secretion. However, the response is limited through the function of some editing enzymes such as ADAR1 which destabilizes the formation of dsRNAs and renders the therapy less efficient through attenuating interferon secretion by immune cells. Since, some cancer cells can survive even after ADAR1 inhibition, it is speculated that there might be other mechanism which contribute to dsRNA destabilization. Since dsRNA formation derived from retroelement transcripts mimics viral infections, we tried to review the mechanistic approaches applied during host-pathogen interaction to highlight a possible candidate which might be cogitable for further investigations in epigenetic therapy. dsRNAs produced by RNA viruses are sensed by PRRs and activate nuclear factor erythroid 2 p45-related factor 2 (NRF2) which further downregulates STING protein and attenuates IFN release. RNA viruses such as SARS-CoV-2 have the potential to impair NRF2 signaling and eliminate its inhibitory effect from STING, leading to excessive release of IFNs and destroy pulmonary cells through cytokine release storm (CRS). Here, we briefly explain that NRF2, in a very downstream side of anti-viral response, might be a potential candidate target in combination with epigenetic therapy to circumvent the limitations in cancer epigenetic therapy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进癌症表观遗传治疗;NRF2的一瞥
表观遗传治疗使用的机制之一是通过基因组重复元件(尤其是Alu逆转录元件)的过表达来提高宿主细胞源性双链RNA (dsRNA)基线水平。dsRNAs触发免疫原性反应,因为免疫系统无法区分源自病毒感染的内源性和外源性dsRNAs;因此称为“病毒模仿反应”。这些dsrna被MDA-5等模式识别受体(PRRs)识别,并通过干扰素分泌进一步诱导炎症反应。然而,一些编辑酶(如ADAR1)的功能限制了这种反应,这些酶破坏了dsRNAs的形成,并通过减少免疫细胞分泌干扰素使治疗效率降低。由于部分癌细胞在ADAR1抑制后仍能存活,推测可能存在其他机制导致dsRNA失稳。由于dsRNA的形成源于逆转录物模拟病毒感染,我们试图回顾宿主-病原体相互作用过程中应用的机制方法,以突出可能在表观遗传治疗中进一步研究的候选方法。RNA病毒产生的dsRNAs被PRRs感知,激活核因子红细胞2 p45相关因子2 (NRF2),进一步下调STING蛋白,减弱IFN释放。SARS-CoV-2等RNA病毒有可能破坏NRF2信号传导并消除其对STING的抑制作用,导致ifn过度释放并通过细胞因子释放风暴(CRS)破坏肺细胞。在这里,我们简要地解释了NRF2,在抗病毒反应的非常下游,可能是一个潜在的候选靶点,与表观遗传治疗联合使用,以绕过癌症表观遗传治疗的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Role of Exosomal MicroRNAs in Modulating the Response of Cancer Cells to Paclitaxel Treatment Phorbol-12-Myristate-13-Acetate (PMA) Reactivates Replication from HIV-1 Latency and Induces Jurkat Cell Death Teaching an Old Drug a New Trick: Targeting Treatment Resistance in Genitourinary Cancers. Navigating the Adipocyte Precursor Niche: Cell-Cell Interactions, Regulatory Mechanisms and Implications for Adipose Tissue Homeostasis. ALK1 Signaling in Human Cardiac Progenitor Cells Promotes a Pro-angiogenic Secretome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1