Jifeng Li, Yanting He, Xiaoyun Zhang, Hong Li, Xiumei Guan, Min Cheng, Xiaodong Cui
{"title":"Effect and Mechanism of Kir2.1 Channel Overexpression on Transdifferentiation of Endothelial Progenitor Cells","authors":"Jifeng Li, Yanting He, Xiaoyun Zhang, Hong Li, Xiumei Guan, Min Cheng, Xiaodong Cui","doi":"10.32604/MCB.2019.05753","DOIUrl":null,"url":null,"abstract":"Objective The propose of the study is to investigate the specific effects of the mechanically sensitive channel Kir2.1 on the transdifferentiation of EPCs so as to understand the molecular mechanism of pathological vascular remodeling. Methods Endothelial progenitor cells (EPCs) were isolated from rat bone marrow and cultured in EGM2 medium in vitro. The recombinant lentiviral vectors carrying Kir2.1 (NM_017296.1) gene was designed and constructed in order to overexpress the gene. The smooth muscle cells (SMCs) molecules marker on EPCs, such as α-SMA, FSP1 and α-SM22, were detected by RT-PCR and cellular immunofluorescence. In addition, cell angiogenic capacity and migration in vitro were assessed by Matrigel and Transwell methods respectively. Moreover, neointimal thickening was evaluated in the surgery model of balloon injury of rat carotid artery in vivo. Result The results showed that the expression levels of α-SM22, FSP1 and α-SMA were up-regulated in the Kir2.1 overexpression group compared with the control. The number of migrating cells in the Kir2.1 overexpression group was significantly higher than that in the scramble group, while quantitative assessment further confirmed that the Kir2.1 overexpression strongly attenuated the ability of bone marrow-derived EPC to form tube-like structures in Matrigel assay. Compared with the control group, morphometric analysis showed ratio of intimal area/medial area (I/M) in rats was increased in rats transplanted with Lenti-Kir2.1 overexpression. Conclusion It is indicated that the overexpression of channel Kir2.1 induces EPCs transdifferentiated into mesenchymal transition SMCs (EndoMT). It may provide a potential target for the treatment or prevention of pathological vascular remodeling disease.","PeriodicalId":48719,"journal":{"name":"Molecular & Cellular Biomechanics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Biomechanics","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.32604/MCB.2019.05753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 1
Abstract
Objective The propose of the study is to investigate the specific effects of the mechanically sensitive channel Kir2.1 on the transdifferentiation of EPCs so as to understand the molecular mechanism of pathological vascular remodeling. Methods Endothelial progenitor cells (EPCs) were isolated from rat bone marrow and cultured in EGM2 medium in vitro. The recombinant lentiviral vectors carrying Kir2.1 (NM_017296.1) gene was designed and constructed in order to overexpress the gene. The smooth muscle cells (SMCs) molecules marker on EPCs, such as α-SMA, FSP1 and α-SM22, were detected by RT-PCR and cellular immunofluorescence. In addition, cell angiogenic capacity and migration in vitro were assessed by Matrigel and Transwell methods respectively. Moreover, neointimal thickening was evaluated in the surgery model of balloon injury of rat carotid artery in vivo. Result The results showed that the expression levels of α-SM22, FSP1 and α-SMA were up-regulated in the Kir2.1 overexpression group compared with the control. The number of migrating cells in the Kir2.1 overexpression group was significantly higher than that in the scramble group, while quantitative assessment further confirmed that the Kir2.1 overexpression strongly attenuated the ability of bone marrow-derived EPC to form tube-like structures in Matrigel assay. Compared with the control group, morphometric analysis showed ratio of intimal area/medial area (I/M) in rats was increased in rats transplanted with Lenti-Kir2.1 overexpression. Conclusion It is indicated that the overexpression of channel Kir2.1 induces EPCs transdifferentiated into mesenchymal transition SMCs (EndoMT). It may provide a potential target for the treatment or prevention of pathological vascular remodeling disease.
期刊介绍:
The field of biomechanics concerns with motion, deformation, and forces in biological systems. With the explosive progress in molecular biology, genomic engineering, bioimaging, and nanotechnology, there will be an ever-increasing generation of knowledge and information concerning the mechanobiology of genes, proteins, cells, tissues, and organs. Such information will bring new diagnostic tools, new therapeutic approaches, and new knowledge on ourselves and our interactions with our environment. It becomes apparent that biomechanics focusing on molecules, cells as well as tissues and organs is an important aspect of modern biomedical sciences. The aims of this journal are to facilitate the studies of the mechanics of biomolecules (including proteins, genes, cytoskeletons, etc.), cells (and their interactions with extracellular matrix), tissues and organs, the development of relevant advanced mathematical methods, and the discovery of biological secrets. As science concerns only with relative truth, we seek ideas that are state-of-the-art, which may be controversial, but stimulate and promote new ideas, new techniques, and new applications.