Endothelial-to-Mesenchymal Transition in Human Adipose Tissue Vasculature Alters the Particulate Secretome and Induces Endothelial Dysfunction.

Bronson Haynes, Li Fang Yang, Ryan Huyck, E. Lehrer, Joshua M. Turner, N. Barabutis, Vanessa L. Correll, Allison H. Mathiesen, W. McPheat, O. Semmes, A. Dobrian
{"title":"Endothelial-to-Mesenchymal Transition in Human Adipose Tissue Vasculature Alters the Particulate Secretome and Induces Endothelial Dysfunction.","authors":"Bronson Haynes, Li Fang Yang, Ryan Huyck, E. Lehrer, Joshua M. Turner, N. Barabutis, Vanessa L. Correll, Allison H. Mathiesen, W. McPheat, O. Semmes, A. Dobrian","doi":"10.1161/ATVBAHA.119.312826","DOIUrl":null,"url":null,"abstract":"OBJECTIVE\nEndothelial cells (EC) in obese adipose tissue (AT) are exposed to a chronic proinflammatory environment that may induce a mesenchymal-like phenotype and altered function. The objective of this study was to establish whether endothelial-to-mesenchymal transition (EndoMT) is present in human AT in obesity and to investigate the effect of such transition on endothelial function and the endothelial particulate secretome represented by extracellular vesicles (EV). Approach and Results: We identified EndoMT in obese human AT depots by immunohistochemical co-localization of CD31 or vWF and α-SMA. We showed that AT EC exposed in vitro to TGF-β (tumor growth factor-β), TNF-α (tumor necrosis factor-α), and IFN-γ (interferon-γ) undergo EndoMT with progressive loss of endothelial markers. The phenotypic change results in failure to maintain a tight barrier in culture, increased migration, and reduced angiogenesis. EndoMT also reduced mitochondrial oxidative phosphorylation and glycolytic capacity of EC. EVs produced by EC that underwent EndoMT dramatically reduced angiogenic capacity of the recipient naïve ECs without affecting their migration or proliferation. Proteomic analysis of EV produced by EC in the proinflammatory conditions showed presence of several pro-inflammatory and immune proteins along with an enrichment in angiogenic receptors.\n\n\nCONCLUSIONS\nWe demonstrated the presence of EndoMT in human AT in obesity. EndoMT in vitro resulted in production of EV that transferred some of the functional and metabolic features to recipient naïve EC. This result suggests that functional and molecular features of EC that underwent EndoMT in vivo can be disseminated in a paracrine or endocrine fashion and may induce endothelial dysfunction in distant vascular beds.","PeriodicalId":8404,"journal":{"name":"Arteriosclerosis, Thrombosis, & Vascular Biology","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arteriosclerosis, Thrombosis, & Vascular Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1161/ATVBAHA.119.312826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

OBJECTIVE Endothelial cells (EC) in obese adipose tissue (AT) are exposed to a chronic proinflammatory environment that may induce a mesenchymal-like phenotype and altered function. The objective of this study was to establish whether endothelial-to-mesenchymal transition (EndoMT) is present in human AT in obesity and to investigate the effect of such transition on endothelial function and the endothelial particulate secretome represented by extracellular vesicles (EV). Approach and Results: We identified EndoMT in obese human AT depots by immunohistochemical co-localization of CD31 or vWF and α-SMA. We showed that AT EC exposed in vitro to TGF-β (tumor growth factor-β), TNF-α (tumor necrosis factor-α), and IFN-γ (interferon-γ) undergo EndoMT with progressive loss of endothelial markers. The phenotypic change results in failure to maintain a tight barrier in culture, increased migration, and reduced angiogenesis. EndoMT also reduced mitochondrial oxidative phosphorylation and glycolytic capacity of EC. EVs produced by EC that underwent EndoMT dramatically reduced angiogenic capacity of the recipient naïve ECs without affecting their migration or proliferation. Proteomic analysis of EV produced by EC in the proinflammatory conditions showed presence of several pro-inflammatory and immune proteins along with an enrichment in angiogenic receptors. CONCLUSIONS We demonstrated the presence of EndoMT in human AT in obesity. EndoMT in vitro resulted in production of EV that transferred some of the functional and metabolic features to recipient naïve EC. This result suggests that functional and molecular features of EC that underwent EndoMT in vivo can be disseminated in a paracrine or endocrine fashion and may induce endothelial dysfunction in distant vascular beds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人脂肪组织血管内皮向间充质转化改变颗粒分泌组并诱导内皮功能障碍。
肥胖脂肪组织(AT)中的内皮细胞(EC)暴露于慢性促炎环境中,可诱导间充质样表型和功能改变。本研究的目的是确定人类肥胖AT中是否存在内皮到间充质转化(EndoMT),并研究这种转化对内皮功能和以细胞外囊泡(EV)为代表的内皮颗粒分泌组的影响。方法和结果:我们通过免疫组化CD31或vWF和α-SMA共定位的方法鉴定了肥胖人AT库中的EndoMT。我们发现体外暴露于TGF-β(肿瘤生长因子-β)、TNF-α(肿瘤坏死因子-α)和IFN-γ(干扰素-γ)的AT EC发生EndoMT,内皮标志物逐渐丧失。表型改变导致培养中不能保持紧密的屏障,增加迁移,减少血管生成。EndoMT还降低了线粒体氧化磷酸化和EC的糖酵解能力。接受EndoMT的内皮细胞产生的内皮细胞显著降低了受体内皮细胞的血管生成能力naïve,但不影响其迁移或增殖。在促炎条件下EC产生的EV的蛋白质组学分析显示,存在几种促炎和免疫蛋白,并在血管生成受体中富集。结论我们证实了肥胖人群AT中存在EndoMT。体外EndoMT产生的EV将一些功能和代谢特征转移给受体naïve EC。这一结果表明,在体内接受EndoMT的内皮细胞的功能和分子特征可以通过旁分泌或内分泌方式播散,并可能诱导远处血管床内皮功能障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editors and Editorial Board. Correction to: Role of LpL (Lipoprotein Lipase) in Macrophage Polarization In Vitro and In Vivo. Tribute to Paul M. Vanhoutte, MD, PhD (1940-2019). Correction to: 18F-Sodium Fluoride Imaging of Coronary Atherosclerosis in Ambulatory Patients With Diabetes Mellitus. Extracellular MicroRNA-92a Mediates Endothelial Cell-Macrophage Communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1