首页 > 最新文献

Arteriosclerosis, Thrombosis, & Vascular Biology最新文献

英文 中文
Editors and Editorial Board. 编辑和编辑委员会。
Pub Date : 2020-01-01 DOI: 10.1161/ATV.0000000000000093
{"title":"Editors and Editorial Board.","authors":"","doi":"10.1161/ATV.0000000000000093","DOIUrl":"https://doi.org/10.1161/ATV.0000000000000093","url":null,"abstract":"","PeriodicalId":8404,"journal":{"name":"Arteriosclerosis, Thrombosis, & Vascular Biology","volume":"36 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80825817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: 18F-Sodium Fluoride Imaging of Coronary Atherosclerosis in Ambulatory Patients With Diabetes Mellitus. 修正:18f -氟化钠对非卧床糖尿病患者冠状动脉粥样硬化的显像。
Pub Date : 2019-12-01 DOI: 10.1161/atv.0000000000000090
{"title":"Correction to: 18F-Sodium Fluoride Imaging of Coronary Atherosclerosis in Ambulatory Patients With Diabetes Mellitus.","authors":"","doi":"10.1161/atv.0000000000000090","DOIUrl":"https://doi.org/10.1161/atv.0000000000000090","url":null,"abstract":"","PeriodicalId":8404,"journal":{"name":"Arteriosclerosis, Thrombosis, & Vascular Biology","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89026218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proceedings of the Ninth HDL (High-Density Lipoprotein) Workshop: Focus on Cardiovascular Disease. 第九届高密度脂蛋白研讨会论文集:关注心血管疾病。
Pub Date : 2019-12-01 DOI: 10.1161/ATVBAHA.119.313340
Annabelle Rodriguez, Bernardo L. Trigatti, C. Mineo, D. Knaack, John T. Wilkins, D. Sahoo, B. Asztalos, S. Mora, M. Cuchel, Henry J. Pownall, C. Rosales, P. Bernatchez, Amanda Ribeiro Martins da Silva, Godfrey S. Getz, Jacob L. Barber, Gregory C. Shearer, Angela M. Zivkovic, U. Tietge, Frank M. Sacks, M. Connelly, Michael N. Oda, W. Davidson, M. Sorci-Thomas, T. Vaisar, G. Ruotolo, K. Vickers, C. Martel
The HDL (high-density lipoprotein) Workshop was established in 2009 as a forum for candid discussions among academic basic scientists, clinical investigators, and industry researchers about the role of HDL in cardiovascular disease. This ninth HDL Workshop was held on May 16 to 17, 2019 in Boston, MA, and included outstanding oral presentations from established and emerging investigators. The Workshop featured 5 sessions with topics that tackled the role of HDL in the vasculature, its structural complexity, its role in health and disease states, and its interaction with the intestinal microbiome. The highlight of the program was awarding the Jack Oram Award to the distinguished professor emeritus G.S. Getz from the University of Chicago. The tenth HDL Workshop will be held on May 2020 in Chicago and will continue the focus on intellectually stimulating presentations by established and emerging investigators on novel roles of HDL in cardiovascular and noncardiovascular health and disease states.
HDL(高密度脂蛋白)研讨会成立于2009年,是学术基础科学家、临床研究人员和行业研究人员就HDL在心血管疾病中的作用进行坦诚讨论的论坛。第九届HDL研讨会于2019年5月16日至17日在马萨诸塞州波士顿举行,包括来自现有和新兴研究人员的杰出口头报告。本次研讨会共分5期,主题包括HDL在血管系统中的作用、其结构复杂性、其在健康和疾病状态中的作用以及其与肠道微生物群的相互作用。本次活动的亮点是向芝加哥大学的杰出名誉教授G.S.盖兹颁发杰克·奥拉姆奖。第十届HDL研讨会将于2020年5月在芝加哥举行,并将继续专注于由成熟和新兴研究人员就HDL在心血管和非心血管健康和疾病状态中的新作用进行智力刺激的演讲。
{"title":"Proceedings of the Ninth HDL (High-Density Lipoprotein) Workshop: Focus on Cardiovascular Disease.","authors":"Annabelle Rodriguez, Bernardo L. Trigatti, C. Mineo, D. Knaack, John T. Wilkins, D. Sahoo, B. Asztalos, S. Mora, M. Cuchel, Henry J. Pownall, C. Rosales, P. Bernatchez, Amanda Ribeiro Martins da Silva, Godfrey S. Getz, Jacob L. Barber, Gregory C. Shearer, Angela M. Zivkovic, U. Tietge, Frank M. Sacks, M. Connelly, Michael N. Oda, W. Davidson, M. Sorci-Thomas, T. Vaisar, G. Ruotolo, K. Vickers, C. Martel","doi":"10.1161/ATVBAHA.119.313340","DOIUrl":"https://doi.org/10.1161/ATVBAHA.119.313340","url":null,"abstract":"The HDL (high-density lipoprotein) Workshop was established in 2009 as a forum for candid discussions among academic basic scientists, clinical investigators, and industry researchers about the role of HDL in cardiovascular disease. This ninth HDL Workshop was held on May 16 to 17, 2019 in Boston, MA, and included outstanding oral presentations from established and emerging investigators. The Workshop featured 5 sessions with topics that tackled the role of HDL in the vasculature, its structural complexity, its role in health and disease states, and its interaction with the intestinal microbiome. The highlight of the program was awarding the Jack Oram Award to the distinguished professor emeritus G.S. Getz from the University of Chicago. The tenth HDL Workshop will be held on May 2020 in Chicago and will continue the focus on intellectually stimulating presentations by established and emerging investigators on novel roles of HDL in cardiovascular and noncardiovascular health and disease states.","PeriodicalId":8404,"journal":{"name":"Arteriosclerosis, Thrombosis, & Vascular Biology","volume":"71 36","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91549624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Tribute to Paul M. Vanhoutte, MD, PhD (1940-2019). 致敬Paul M. Vanhoutte, MD, PhD(1940-2019)。
Pub Date : 2019-12-01 DOI: 10.1161/atvbaha.119.313461
Chantal M Boulanger, O. Baretella, G. Blaise, R. Bond, Yin Cai, C. K. Chan, T. Chataigneau, Maggie Jie Chen, Hui Chen, Yanhua Cheng, D. Clement, R. Cohen, Michael J. Collis, A. Danser, J. D. De Mey, Charlotte M. S. Detremmerie, D. Duprez, M. Félétou, Nicolas Flavahan, Yuansheng Gao, Yumeng Guo, Ute Hoeffner, D. Houston, Ianto Boscheng Huang, Yu Huang, Stephane Iliano, D. Junquero, Z. Katusic, K. Komori, Mary Y.K. Lee, S. Leung, Zhuoming Li, Sophie Liang, Jacky Tsz Chiu Liu, T. Luscher, F. Michel, V. Miller, J. Mombouli, K. Morrison, S. Muldoon, S. O'Rourke, Louis Perrault, J. Quignard, N. Rusch, C. Sánchez-Ferrer, V. Schini-Kerth, K. Shen, Yi Shi, Erfei Song, Kiwi W Y Sun, S. Taddei, E. H. Tang, M. Tuncer, R. van den Ende, Y. Vedernikov, T. Verbeuren, C. Webb, A. Weigert, K. K. Wong, Cheng Xu, Kangmin Yang, Fan Ying, T. Zellers, Ying-Yong Zhao, Qian Zou, H. Shimokawa
{"title":"Tribute to Paul M. Vanhoutte, MD, PhD (1940-2019).","authors":"Chantal M Boulanger, O. Baretella, G. Blaise, R. Bond, Yin Cai, C. K. Chan, T. Chataigneau, Maggie Jie Chen, Hui Chen, Yanhua Cheng, D. Clement, R. Cohen, Michael J. Collis, A. Danser, J. D. De Mey, Charlotte M. S. Detremmerie, D. Duprez, M. Félétou, Nicolas Flavahan, Yuansheng Gao, Yumeng Guo, Ute Hoeffner, D. Houston, Ianto Boscheng Huang, Yu Huang, Stephane Iliano, D. Junquero, Z. Katusic, K. Komori, Mary Y.K. Lee, S. Leung, Zhuoming Li, Sophie Liang, Jacky Tsz Chiu Liu, T. Luscher, F. Michel, V. Miller, J. Mombouli, K. Morrison, S. Muldoon, S. O'Rourke, Louis Perrault, J. Quignard, N. Rusch, C. Sánchez-Ferrer, V. Schini-Kerth, K. Shen, Yi Shi, Erfei Song, Kiwi W Y Sun, S. Taddei, E. H. Tang, M. Tuncer, R. van den Ende, Y. Vedernikov, T. Verbeuren, C. Webb, A. Weigert, K. K. Wong, Cheng Xu, Kangmin Yang, Fan Ying, T. Zellers, Ying-Yong Zhao, Qian Zou, H. Shimokawa","doi":"10.1161/atvbaha.119.313461","DOIUrl":"https://doi.org/10.1161/atvbaha.119.313461","url":null,"abstract":"","PeriodicalId":8404,"journal":{"name":"Arteriosclerosis, Thrombosis, & Vascular Biology","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78535656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extracellular MicroRNA-92a Mediates Endothelial Cell-Macrophage Communication. 细胞外MicroRNA-92a介导内皮细胞-巨噬细胞通讯。
Pub Date : 2019-12-01 DOI: 10.1161/ATVBAHA.119.312707
Ya-ju Chang, Yi-Shuan J. Li, Chia-Ching Wu, Kuei‐Chun Wang, Tzu-chieh Huang, Z. Chen, S. Chien
OBJECTIVEUnderstanding message delivery among vascular cells is essential for deciphering the intercellular communicatios in cardiovascular diseases. MicroRNA (miR)-92a is enriched in endothelial cells (ECs) and circulation under atheroprone conditions. Macrophages are the primary immune cells in atherosclerotic lesions that modulate lesion development. Therefore, we hypothesize that, in response to atheroprone stimuli, ECs export miR-92a to macrophages to regulate their functions and enhance atherosclerotic progression. Approach and Results: We investigated the macrophage functions that are regulated by EC miR-92a under atheroprone microenvironments. We first determined the distributions of functional extracellular miR-92a by fractionating the intravesicular and extravesicular compartments from endothelial conditioned media and mice serum. The results indicate that extracellular vesicles are the primary vehicles for EC miR-92a transportation. Overexpression of miR-92a in ECs enhanced the proinflammatory responses and low-density lipoprotein uptake, while impaired the migration, of cocultured macrophage. Opposite effects were found in macrophages cocultured with ECs with miR-92a knockdown. Further analyses demonstrated that intravesicular miR-92a suppressed the expression of target gene Krüppel-like factor 4 (KLF4) in macrophages, suggesting a mechanism by which intravesicular miR-92a regulates recipient cell functions. Indeed, the overexpression of KLF4 rescued the EC miR-92a-induced macrophage atheroprone phenotypes. Furthermore, an inverse correlation of intravesicular miR-92a in blood serum and KLF4 expression in lesions was observed in atherosclerotic animals, indicating the potential function of extracellular miR-92a in regulating vascular diseases.CONCLUSIONSEC miR-92a can be transported to macrophages through extracellular vesicles to regulate KLF4 levels, thus leading to the atheroprone phenotypes of macrophage and, hence, atherosclerotic lesion formation.
目的:了解血管细胞间的信息传递对于解读心血管疾病的细胞间通讯至关重要。在动脉粥样硬化条件下,MicroRNA (miR)-92a在内皮细胞(ECs)和循环中富集。巨噬细胞是动脉粥样硬化病变中调节病变发展的主要免疫细胞。因此,我们假设,作为对动脉粥样硬化酮刺激的反应,内皮细胞将miR-92a输出到巨噬细胞,以调节巨噬细胞的功能并促进动脉粥样硬化的进展。方法和结果:我们研究了在动脉粥样硬化微环境下EC miR-92a调控的巨噬细胞功能。我们首先通过从内皮条件培养基和小鼠血清中分离泡内和泡外腔室来确定功能性细胞外miR-92a的分布。结果表明,细胞外囊泡是EC miR-92a运输的主要载体。在ECs中过表达miR-92a增强了共培养巨噬细胞的促炎反应和低密度脂蛋白摄取,同时损害了巨噬细胞的迁移。在与miR-92a敲低的内皮细胞共培养的巨噬细胞中发现相反的效果。进一步分析表明,囊泡内miR-92a抑制巨噬细胞中靶基因kr样因子4 (KLF4)的表达,提示囊泡内miR-92a调节受体细胞功能的机制。事实上,KLF4的过表达挽救了EC mir -92a诱导的巨噬细胞动脉粥样硬化表型。此外,在动脉粥样硬化动物中观察到血清囊内miR-92a与病变中KLF4表达呈负相关,表明细胞外miR-92a在调节血管疾病中的潜在功能。结论sec miR-92a可通过细胞外囊泡转运至巨噬细胞,调节KLF4水平,从而导致巨噬细胞的动脉粥样硬化表型,从而形成动脉粥样硬化病变。
{"title":"Extracellular MicroRNA-92a Mediates Endothelial Cell-Macrophage Communication.","authors":"Ya-ju Chang, Yi-Shuan J. Li, Chia-Ching Wu, Kuei‐Chun Wang, Tzu-chieh Huang, Z. Chen, S. Chien","doi":"10.1161/ATVBAHA.119.312707","DOIUrl":"https://doi.org/10.1161/ATVBAHA.119.312707","url":null,"abstract":"OBJECTIVE\u0000Understanding message delivery among vascular cells is essential for deciphering the intercellular communicatios in cardiovascular diseases. MicroRNA (miR)-92a is enriched in endothelial cells (ECs) and circulation under atheroprone conditions. Macrophages are the primary immune cells in atherosclerotic lesions that modulate lesion development. Therefore, we hypothesize that, in response to atheroprone stimuli, ECs export miR-92a to macrophages to regulate their functions and enhance atherosclerotic progression. Approach and Results: We investigated the macrophage functions that are regulated by EC miR-92a under atheroprone microenvironments. We first determined the distributions of functional extracellular miR-92a by fractionating the intravesicular and extravesicular compartments from endothelial conditioned media and mice serum. The results indicate that extracellular vesicles are the primary vehicles for EC miR-92a transportation. Overexpression of miR-92a in ECs enhanced the proinflammatory responses and low-density lipoprotein uptake, while impaired the migration, of cocultured macrophage. Opposite effects were found in macrophages cocultured with ECs with miR-92a knockdown. Further analyses demonstrated that intravesicular miR-92a suppressed the expression of target gene Krüppel-like factor 4 (KLF4) in macrophages, suggesting a mechanism by which intravesicular miR-92a regulates recipient cell functions. Indeed, the overexpression of KLF4 rescued the EC miR-92a-induced macrophage atheroprone phenotypes. Furthermore, an inverse correlation of intravesicular miR-92a in blood serum and KLF4 expression in lesions was observed in atherosclerotic animals, indicating the potential function of extracellular miR-92a in regulating vascular diseases.\u0000\u0000\u0000CONCLUSIONS\u0000EC miR-92a can be transported to macrophages through extracellular vesicles to regulate KLF4 levels, thus leading to the atheroprone phenotypes of macrophage and, hence, atherosclerotic lesion formation.","PeriodicalId":8404,"journal":{"name":"Arteriosclerosis, Thrombosis, & Vascular Biology","volume":"53 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90079031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 57
Correction to: Role of LpL (Lipoprotein Lipase) in Macrophage Polarization In Vitro and In Vivo. 修正:脂蛋白脂肪酶在体内和体外巨噬细胞极化中的作用。
Pub Date : 2019-12-01 DOI: 10.1161/atv.0000000000000089
{"title":"Correction to: Role of LpL (Lipoprotein Lipase) in Macrophage Polarization In Vitro and In Vivo.","authors":"","doi":"10.1161/atv.0000000000000089","DOIUrl":"https://doi.org/10.1161/atv.0000000000000089","url":null,"abstract":"","PeriodicalId":8404,"journal":{"name":"Arteriosclerosis, Thrombosis, & Vascular Biology","volume":"35 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74815119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New Insights Into HIMF (Hypoxia-Induced Mitogenic Factor)-Mediated Signaling Pathways in Pulmonary Hypertension. 缺氧诱导的有丝分裂因子介导的肺动脉高压信号通路的新见解。
Pub Date : 2019-11-26 DOI: 10.1161/ATVBAHA.119.313535
O. Boucherat, R. Paulin, S. Provencher, S. Bonnet
Endothelial cell (EC) dysfunction, characterized by cell injury, ensuing apoptosis, and release of growth factors and cytokines, is a critical early event in the pathogenesis of many cardiovascular diseases, including pulmonary hypertension (PH). Indeed, excessive production of paracrine factors from damaged EC promotes the recruitment of circulating inflammatory cells and triggers vascular remodeling through stimulation of pulmonary artery (PA) smooth muscle cell (SMC) contraction and proliferation. Although endothelium injury is recognized to play a causative role in the development and progression of PH, the underlying mechanisms as well as the nature of the signaling molecules that mediates crosstalk between PAECs and adjacent SMCs remain poorly understood.
内皮细胞(EC)功能障碍以细胞损伤、随之而来的细胞凋亡、生长因子和细胞因子的释放为特征,是包括肺动脉高压(PH)在内的许多心血管疾病发病机制的关键早期事件。事实上,受损EC产生的过量旁分泌因子促进循环炎症细胞的募集,并通过刺激肺动脉(PA)平滑肌细胞(SMC)的收缩和增殖触发血管重塑。尽管内皮损伤被认为在PH的发生和发展中起着致病作用,但介导paec和邻近SMCs之间串扰的潜在机制以及信号分子的性质仍然知之甚少。
{"title":"New Insights Into HIMF (Hypoxia-Induced Mitogenic Factor)-Mediated Signaling Pathways in Pulmonary Hypertension.","authors":"O. Boucherat, R. Paulin, S. Provencher, S. Bonnet","doi":"10.1161/ATVBAHA.119.313535","DOIUrl":"https://doi.org/10.1161/ATVBAHA.119.313535","url":null,"abstract":"Endothelial cell (EC) dysfunction, characterized by cell injury, ensuing apoptosis, and release of growth factors and cytokines, is a critical early event in the pathogenesis of many cardiovascular diseases, including pulmonary hypertension (PH). Indeed, excessive production of paracrine factors from damaged EC promotes the recruitment of circulating inflammatory cells and triggers vascular remodeling through stimulation of pulmonary artery (PA) smooth muscle cell (SMC) contraction and proliferation. Although endothelium injury is recognized to play a causative role in the development and progression of PH, the underlying mechanisms as well as the nature of the signaling molecules that mediates crosstalk between PAECs and adjacent SMCs remain poorly understood.","PeriodicalId":8404,"journal":{"name":"Arteriosclerosis, Thrombosis, & Vascular Biology","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78465674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Response by Nechipurenko et al to Letter Regarding Article, "Clot Contraction Drives the Translocation of Procoagulant Platelets to Thrombus Surface". Nechipurenko等人对Letter concerning Article,“凝块收缩驱动促凝血小板向血栓表面移位”的回应。
Pub Date : 2019-11-26 DOI: 10.1161/ATVBAHA.119.313479
D. Nechipurenko, P. Mangin, M. Panteleev
{"title":"Response by Nechipurenko et al to Letter Regarding Article, \"Clot Contraction Drives the Translocation of Procoagulant Platelets to Thrombus Surface\".","authors":"D. Nechipurenko, P. Mangin, M. Panteleev","doi":"10.1161/ATVBAHA.119.313479","DOIUrl":"https://doi.org/10.1161/ATVBAHA.119.313479","url":null,"abstract":"","PeriodicalId":8404,"journal":{"name":"Arteriosclerosis, Thrombosis, & Vascular Biology","volume":"100 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85805054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MicroRNA Extracellular Vesicle Stowaways in Cell-Cell Communication and Organ Crosstalk. 细胞间通讯和器官串扰中的MicroRNA胞外囊泡偷渡。
Pub Date : 2019-11-26 DOI: 10.1161/ATVBAHA.119.313533
M. Rogers, E. Aikawa
Extracellular vesicles (EVs) function as mediators of cell-cell communication1 and organ crosstalk,2 but a complete understanding of the mechanistic roles this critical communication process plays in cardiovascular and associated diseases is lacking. In normal conditions, EV crosstalk is important for proper cell and organ function, but in diseased conditions EV cargos can be altered in a way that promotes disease pathology. Multiple cargos have been observed in EVs, including RNAs, such as microRNA, DNA, proteins, and lipids, which can be encased within EVs or associated with EV membranes. Given this critical function, identifying the communication roles of EVs in normal physiology and diseasedriving mechanisms holds great therapeutic promise. In this issue of Arteriosclerosis, Thrombosis, and Vascular Biology, Chang et al3 propose EV transport as a major pathway in which miR-92a is transported from endothelial cells to macrophages that, in turn, contributes to the development of atherosclerosis. This study identifies a key mechanism of how miR-92a cell-cell communication occurs in atherosclerotic vasculature and raises the potential of EV-associated miR-92a as a disease biomarker and therapeutic target.
细胞外囊泡(EVs)作为细胞间通讯和器官串扰的介质,但对这一关键通讯过程在心血管和相关疾病中所起的机制作用尚缺乏完整的了解。在正常情况下,EV串扰对正常的细胞和器官功能是重要的,但在病变情况下,EV货物可以以促进疾病病理的方式改变。在电动汽车中已经观察到多种货物,包括rna,如microRNA、DNA、蛋白质和脂质,它们可以被包裹在电动汽车内或与电动汽车膜相关。鉴于这一关键功能,确定ev在正常生理和疾病驱动机制中的通讯作用具有很大的治疗前景。在这一期的《动脉硬化、血栓形成和血管生物学》中,Chang等人3提出EV转运是miR-92a从内皮细胞转运到巨噬细胞的主要途径,进而促进动脉粥样硬化的发展。本研究确定了miR-92a细胞-细胞通讯如何在动脉粥样硬化血管中发生的关键机制,并提高了ev相关的miR-92a作为疾病生物标志物和治疗靶点的潜力。
{"title":"MicroRNA Extracellular Vesicle Stowaways in Cell-Cell Communication and Organ Crosstalk.","authors":"M. Rogers, E. Aikawa","doi":"10.1161/ATVBAHA.119.313533","DOIUrl":"https://doi.org/10.1161/ATVBAHA.119.313533","url":null,"abstract":"Extracellular vesicles (EVs) function as mediators of cell-cell communication1 and organ crosstalk,2 but a complete understanding of the mechanistic roles this critical communication process plays in cardiovascular and associated diseases is lacking. In normal conditions, EV crosstalk is important for proper cell and organ function, but in diseased conditions EV cargos can be altered in a way that promotes disease pathology. Multiple cargos have been observed in EVs, including RNAs, such as microRNA, DNA, proteins, and lipids, which can be encased within EVs or associated with EV membranes. Given this critical function, identifying the communication roles of EVs in normal physiology and diseasedriving mechanisms holds great therapeutic promise. In this issue of Arteriosclerosis, Thrombosis, and Vascular Biology, Chang et al3 propose EV transport as a major pathway in which miR-92a is transported from endothelial cells to macrophages that, in turn, contributes to the development of atherosclerosis. This study identifies a key mechanism of how miR-92a cell-cell communication occurs in atherosclerotic vasculature and raises the potential of EV-associated miR-92a as a disease biomarker and therapeutic target.","PeriodicalId":8404,"journal":{"name":"Arteriosclerosis, Thrombosis, & Vascular Biology","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80596177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
PKa (Plasma Kallikrein) Contributes to Coagulation in the Absence of FXI (Factor XI) by Activating FIX (Factor IX).
Pub Date : 2019-11-26 DOI: 10.1161/ATVBAHA.119.313503
M. Visser, R. van Oerle, H. ten Cate, V. Laux, N. Mackman, S. Heitmeier, H. Spronk
OBJECTIVESFXIa (factor XIa) induces clot formation, and human congenital FXI deficiency protects against venous thromboembolism and stroke. In contrast, the role of FXI in hemostasis is rather small, especially compared with FIX deficiency. Little is known about the cause of the difference in phenotypes associated with FIX deficiency and FXI deficiency. We speculated that activation of FIX via the intrinsic coagulation is not solely dependent on FXI(a; activated FXI) and aimed at identifying an FXI-independent FIX activation pathway. Approach and Results: We observed that ellagic acid and long-chain polyphosphates activated the coagulation system in FXI-deficient plasma, as could be demonstrated by measurement of thrombin generation, FIXa-AT (antithrombin), and FXa-AT complex levels, suggesting an FXI bypass route of FIX activation. Addition of a specific PKa (plasma kallikrein) inhibitor to FXI-deficient plasma decreased thrombin generation, prolonged activated partial thromboplastin time, and diminished FIXa-AT and FXa-AT complex formation, indicating that PKa plays a role in the FXI bypass route of FIX activation. In addition, FIXa-AT complex formation was significantly increased in F11-/- mice treated with ellagic acid or long-chain polyphosphates compared with controls and this increase was significantly reduced by inhibition of PKa.CONCLUSIONSWe demonstrated that activation of FXII leads to thrombin generation via FIX activation by PKa in the absence of FXI. These findings may, in part, explain the different phenotypes associated with FIX and FXI deficiencies.
目的探讨FXI (XIa因子)诱导血栓形成的机制,探讨先天性FXI缺乏对静脉血栓栓塞和脑卒中的保护作用。相比之下,FXI在止血中的作用很小,特别是与FIX缺乏相比。关于FIX缺乏症和FXI缺乏症相关表型差异的原因知之甚少。我们推测通过内在凝血激活FIX并不完全依赖于FXI(a;激活FXI),旨在确定一个不依赖于FXI的FIX激活途径。方法和结果:我们观察到鞣花酸和长链多磷酸激活了FXI缺陷血浆中的凝血系统,这可以通过测量凝血酶生成、FIXa-AT(抗凝血酶)和FXa-AT复合物水平来证明,这表明FXI旁路途径激活FIX。在FXI缺陷血浆中添加特异性PKa(血浆钾化肽)抑制剂可减少凝血酶的生成,延长活化的部分凝血活素时间,减少FIXa-AT和FXa-AT复合物的形成,表明PKa在FXI旁路途径的FIX激活中起作用。此外,与对照组相比,鞣花酸或长链多磷酸盐处理的F11-/-小鼠中FIXa-AT复合物的形成显著增加,而PKa的抑制显著降低了这种增加。我们证明,在FXI缺失的情况下,FXII的激活通过PKa激活FIX导致凝血酶生成。这些发现可能部分解释了FIX和FXI缺陷相关的不同表型。
{"title":"PKa (Plasma Kallikrein) Contributes to Coagulation in the Absence of FXI (Factor XI) by Activating FIX (Factor IX).","authors":"M. Visser, R. van Oerle, H. ten Cate, V. Laux, N. Mackman, S. Heitmeier, H. Spronk","doi":"10.1161/ATVBAHA.119.313503","DOIUrl":"https://doi.org/10.1161/ATVBAHA.119.313503","url":null,"abstract":"OBJECTIVES\u0000FXIa (factor XIa) induces clot formation, and human congenital FXI deficiency protects against venous thromboembolism and stroke. In contrast, the role of FXI in hemostasis is rather small, especially compared with FIX deficiency. Little is known about the cause of the difference in phenotypes associated with FIX deficiency and FXI deficiency. We speculated that activation of FIX via the intrinsic coagulation is not solely dependent on FXI(a; activated FXI) and aimed at identifying an FXI-independent FIX activation pathway. Approach and Results: We observed that ellagic acid and long-chain polyphosphates activated the coagulation system in FXI-deficient plasma, as could be demonstrated by measurement of thrombin generation, FIXa-AT (antithrombin), and FXa-AT complex levels, suggesting an FXI bypass route of FIX activation. Addition of a specific PKa (plasma kallikrein) inhibitor to FXI-deficient plasma decreased thrombin generation, prolonged activated partial thromboplastin time, and diminished FIXa-AT and FXa-AT complex formation, indicating that PKa plays a role in the FXI bypass route of FIX activation. In addition, FIXa-AT complex formation was significantly increased in F11-/- mice treated with ellagic acid or long-chain polyphosphates compared with controls and this increase was significantly reduced by inhibition of PKa.\u0000\u0000\u0000CONCLUSIONS\u0000We demonstrated that activation of FXII leads to thrombin generation via FIX activation by PKa in the absence of FXI. These findings may, in part, explain the different phenotypes associated with FIX and FXI deficiencies.","PeriodicalId":8404,"journal":{"name":"Arteriosclerosis, Thrombosis, & Vascular Biology","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90594859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
期刊
Arteriosclerosis, Thrombosis, & Vascular Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1