A Stepwise Rating Prediction Method for Recommender Systems

Soojung Lee
{"title":"A Stepwise Rating Prediction Method for Recommender Systems","authors":"Soojung Lee","doi":"10.7236/JIIBC.2021.21.4.183","DOIUrl":null,"url":null,"abstract":"Collaborative filtering based recommender systems are currently indispensable function of commercial systems in various fields, being a useful service by providing customized products that users will prefer. However, there is a high possibility that the prediction of preferrable products is inaccurate, when the user's rating data are insufficient. In order to overcome this drawback, this study suggests a stepwise method for prediction of product ratings. If the application conditions of the prediction method corresponding to each step are not satisfied, the method of the next step is applied. To evaluate the performance of the proposed method, experiments using a public dataset are conducted. As a result, our method significantly improves prediction and precision performance of collaborative filtering systems employing various conventional similarity measures and outperforms performance of the previous methods for solving rating data sparsity.","PeriodicalId":22795,"journal":{"name":"The Journal of the Institute of Webcasting, Internet and Telecommunication","volume":"41 1","pages":"183-188"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of the Institute of Webcasting, Internet and Telecommunication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7236/JIIBC.2021.21.4.183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Collaborative filtering based recommender systems are currently indispensable function of commercial systems in various fields, being a useful service by providing customized products that users will prefer. However, there is a high possibility that the prediction of preferrable products is inaccurate, when the user's rating data are insufficient. In order to overcome this drawback, this study suggests a stepwise method for prediction of product ratings. If the application conditions of the prediction method corresponding to each step are not satisfied, the method of the next step is applied. To evaluate the performance of the proposed method, experiments using a public dataset are conducted. As a result, our method significantly improves prediction and precision performance of collaborative filtering systems employing various conventional similarity measures and outperforms performance of the previous methods for solving rating data sparsity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
推荐系统的逐步评级预测方法
基于协同过滤的推荐系统是目前商业系统在各个领域不可或缺的功能,通过提供用户喜欢的定制产品,是一种有用的服务。然而,在用户评分数据不足的情况下,对首选产品的预测很有可能不准确。为了克服这一缺点,本研究提出了一种逐步预测产品评级的方法。如果不满足每一步对应的预测方法的应用条件,则应用下一步的方法。为了评估所提出方法的性能,使用公共数据集进行了实验。因此,我们的方法显著提高了采用各种传统相似性度量的协同过滤系统的预测和精度性能,并且优于先前解决评级数据稀疏性的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Apple Detection Algorithm based on an Improved SSD Effect of Investment Evaluation Criteria of Public ICT Projects on Business Success Lightweight of ONNX using Quantization-based Model Compression A study on Recognition of Inpatient Room Acoustic Pattern for Hospital safety An emprical analysis on the effect of OTT company's content investment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1