Hybrid Deep Learning Models for Multi-classification of Tumour from Brain MRI

Hafiza Akter Munira, Md. Saiful Islam
{"title":"Hybrid Deep Learning Models for Multi-classification of Tumour from Brain MRI","authors":"Hafiza Akter Munira, Md. Saiful Islam","doi":"10.20473/jisebi.8.2.162-174","DOIUrl":null,"url":null,"abstract":"Background: Brain tumour categorisation can be assisted with computer-aided diagnostic (CAD) for medical applications. Biopsies to classify brain tumours can be costly and time-consuming. Radiologists may also misclassify brain tumour types when handling large amounts of data with multiple classes. In this case, technological advancements and machine learning can help.\nObjective: This study proposes hybrid deep learning approaches for classifying brain tumours using convolutional neural networks (CNN) and machine learning (ML) classifiers.\nMethods: A new 23-layer CNN architecture is developed for brain deep feature extraction from magnetic resonance imaging (MRI). Random forest (RF) and support vector machine (SVM) classifiers are then used to evaluate the extracted in-depth features from the flattened layer of the CNN model. This study is unique because it employs CNN, CNN-RF, CNN-SVM, and tuned Inception V3 deep learning models on multi-class brain MRI datasets. The proposed hybrid method is run on two publicly available datasets.\nResults: Among the four models, the CNN-RF model achieves 96.52% accuracy on the Fig share 3c dataset, while the CNN-SVM model achieves 95.41% accuracy on the large Kaggle 4c dataset with four classes (glioma, meningioma, normal, pituitary).\nConclusion: Experimental outcomes show that the hybrid techniques can significantly enhance the classification performance, especially on multi-class datasets (glioma, meningioma, normal, pituitary). This study also examines the various weight strategies for dealing with overfitting analytics.\n \nKeywords: Brain Tumour, Convolutional Neural Network, Feature Extraction, Multi-Classification, Machine Learning Classifiers","PeriodicalId":16185,"journal":{"name":"Journal of Information Systems Engineering and Business Intelligence","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Systems Engineering and Business Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20473/jisebi.8.2.162-174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Background: Brain tumour categorisation can be assisted with computer-aided diagnostic (CAD) for medical applications. Biopsies to classify brain tumours can be costly and time-consuming. Radiologists may also misclassify brain tumour types when handling large amounts of data with multiple classes. In this case, technological advancements and machine learning can help. Objective: This study proposes hybrid deep learning approaches for classifying brain tumours using convolutional neural networks (CNN) and machine learning (ML) classifiers. Methods: A new 23-layer CNN architecture is developed for brain deep feature extraction from magnetic resonance imaging (MRI). Random forest (RF) and support vector machine (SVM) classifiers are then used to evaluate the extracted in-depth features from the flattened layer of the CNN model. This study is unique because it employs CNN, CNN-RF, CNN-SVM, and tuned Inception V3 deep learning models on multi-class brain MRI datasets. The proposed hybrid method is run on two publicly available datasets. Results: Among the four models, the CNN-RF model achieves 96.52% accuracy on the Fig share 3c dataset, while the CNN-SVM model achieves 95.41% accuracy on the large Kaggle 4c dataset with four classes (glioma, meningioma, normal, pituitary). Conclusion: Experimental outcomes show that the hybrid techniques can significantly enhance the classification performance, especially on multi-class datasets (glioma, meningioma, normal, pituitary). This study also examines the various weight strategies for dealing with overfitting analytics.   Keywords: Brain Tumour, Convolutional Neural Network, Feature Extraction, Multi-Classification, Machine Learning Classifiers
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脑MRI肿瘤多分类的混合深度学习模型
背景:在医学应用中,计算机辅助诊断(CAD)有助于脑肿瘤的分类。通过活组织检查对脑肿瘤进行分类既昂贵又耗时。放射科医生在处理多个类别的大量数据时,也可能对脑肿瘤类型进行错误分类。在这种情况下,技术进步和机器学习可以提供帮助。目的:本研究提出了使用卷积神经网络(CNN)和机器学习(ML)分类器进行脑肿瘤分类的混合深度学习方法。方法:提出了一种新的23层CNN架构,用于磁共振成像(MRI)脑深部特征提取。然后使用随机森林(RF)和支持向量机(SVM)分类器对从CNN模型的扁平层中提取的深度特征进行评估。这项研究的独特之处在于,它在多类脑MRI数据集上使用了CNN、CNN- rf、CNN- svm和调优的Inception V3深度学习模型。所提出的混合方法在两个公开可用的数据集上运行。结果:四种模型中,CNN-RF模型在Fig share 3c数据集上的准确率达到96.52%,CNN-SVM模型在4类(胶质瘤、脑膜瘤、正常、垂体)的大型Kaggle 4c数据集上的准确率达到95.41%。结论:实验结果表明,混合技术可以显著提高分类性能,特别是在多类数据集(胶质瘤、脑膜瘤、正常人、垂体)上。本研究还考察了处理过拟合分析的各种权重策略。关键词:脑肿瘤,卷积神经网络,特征提取,多分类,机器学习分类器
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
期刊最新文献
Sentiment Analysis on a Large Indonesian Product Review Dataset Leveraging Biotic Interaction Knowledge Graph and Network Analysis to Uncover Insect Vectors of Plant Virus Model-based Decision Support System Using a System Dynamics Approach to Increase Corn Productivity Optimizing Support Vector Machine Performance for Parkinson's Disease Diagnosis Using GridSearchCV and PCA-Based Feature Extraction A Practical Approach to Enhance Data Quality Management in Government: Case Study of Indonesian Customs and Excise Office
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1