Extracellular Production of Glutathione by Recombinant Escherichia coli K-12

IF 2.1 Q3 MICROBIOLOGY Microbiology Research Pub Date : 2023-08-23 DOI:10.3390/microbiolres14030080
Hideyuki Suzuki, Kazuki Nishida, Tatsuya Nakamura
{"title":"Extracellular Production of Glutathione by Recombinant Escherichia coli K-12","authors":"Hideyuki Suzuki, Kazuki Nishida, Tatsuya Nakamura","doi":"10.3390/microbiolres14030080","DOIUrl":null,"url":null,"abstract":"The goal of this study was to produce a sufficient amount of glutathione in the fermentation medium without the addition of cysteine. This would simplify and reduce the cost of its purification. In addition to reducing the cost of cysteine, it also avoids the inhibition of bacterial growth by cysteine. The gshA, gshB, and cysE genes of Escherichia coli were cloned under the control of the strong T5 promoter of the pQE-80L plasmid and introduced into an E. coli strain knocked out for the genes encoding γ-glutamyltranspeptidase and the GsiABCD glutathione transporter, which are responsible for the recycling of excreted glutathione. The overexpression of the gshA and gshB genes, genes for γ-glutamylcysteine synthetase and glutathione synthetase, and the cysEV95R D96P gene, a gene for serine acetyltransferase with the V95R D96P mutation that makes it insensitive to cysteine, were effective on glutathione production. Na2S2O3 was a good sulfur source for glutathione production, while the addition of Na2SO4 did not affect the glutathione production. With the addition of 50 mM glutamic acid and 75 mM glycine, but without the addition of cysteine, to the simplified SM1 medium, 4.6 mM and 0.56 mM of the reduced and oxidized glutathione, respectively, were accumulated in the extracellular space after 36 h of batch culture. This can eliminate the need to extract glutathione from the bacterial cells for purification.","PeriodicalId":43788,"journal":{"name":"Microbiology Research","volume":"18 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/microbiolres14030080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of this study was to produce a sufficient amount of glutathione in the fermentation medium without the addition of cysteine. This would simplify and reduce the cost of its purification. In addition to reducing the cost of cysteine, it also avoids the inhibition of bacterial growth by cysteine. The gshA, gshB, and cysE genes of Escherichia coli were cloned under the control of the strong T5 promoter of the pQE-80L plasmid and introduced into an E. coli strain knocked out for the genes encoding γ-glutamyltranspeptidase and the GsiABCD glutathione transporter, which are responsible for the recycling of excreted glutathione. The overexpression of the gshA and gshB genes, genes for γ-glutamylcysteine synthetase and glutathione synthetase, and the cysEV95R D96P gene, a gene for serine acetyltransferase with the V95R D96P mutation that makes it insensitive to cysteine, were effective on glutathione production. Na2S2O3 was a good sulfur source for glutathione production, while the addition of Na2SO4 did not affect the glutathione production. With the addition of 50 mM glutamic acid and 75 mM glycine, but without the addition of cysteine, to the simplified SM1 medium, 4.6 mM and 0.56 mM of the reduced and oxidized glutathione, respectively, were accumulated in the extracellular space after 36 h of batch culture. This can eliminate the need to extract glutathione from the bacterial cells for purification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重组大肠杆菌K-12细胞外生产谷胱甘肽的研究
本研究的目的是在发酵培养基中不添加半胱氨酸的情况下产生足量的谷胱甘肽。这将简化并降低其净化成本。除了降低半胱氨酸的成本外,还避免了半胱氨酸对细菌生长的抑制。在pQE-80L质粒强T5启动子的控制下克隆大肠杆菌的gshA、gshB和cysE基因,并将其引入敲除γ-谷氨酰转肽酶和GsiABCD谷胱甘肽转运蛋白编码基因的大肠杆菌菌株中,这些基因负责谷胱甘肽的排泄循环。γ-谷氨酰半胱氨酸合成酶和谷胱甘肽合成酶基因gshA和gshB基因以及丝氨酸乙酰转移酶基因cysEV95R D96P基因的过表达对谷胱甘肽的产生有效。Na2S2O3是生产谷胱甘肽的良好硫源,而Na2SO4的加入对谷胱甘肽的生产没有影响。在简化的SM1培养基中添加50 mM谷氨酸和75 mM甘氨酸,但不添加半胱氨酸,经过36 h的批量培养,在细胞外空间分别积累了4.6 mM和0.56 mM的还原谷胱甘肽和氧化谷胱甘肽。这可以消除从细菌细胞中提取谷胱甘肽进行纯化的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microbiology Research
Microbiology Research MICROBIOLOGY-
CiteScore
1.90
自引率
6.70%
发文量
62
审稿时长
10 weeks
期刊介绍: Microbiology Research is an international, online-only, open access peer-reviewed journal which publishes original research, review articles, editorials, perspectives, case reports and brief reports to benefit researchers, microbiologists, physicians, veterinarians. Microbiology Research publishes ‘Clinic’ and ‘Research’ papers divided into two different skill and proficiency levels: ‘Junior’ and ‘Professional’. The aim of this four quadrant grid is to encourage younger researchers, physicians and veterinarians to submit their results even if their studies encompass just a limited set of observations or rely on basic statistical approach, yet upholding the customary sound approach of every scientific article.
期刊最新文献
Updates on Staphylococcal Vaccines Assess the Diagnostic Accuracy of GeneXpert to Detect Mycobacterium tuberculosis and Rifampicin-Resistant Tuberculosis among Presumptive Tuberculosis and Presumptive Drug Resistant Tuberculosis Patients Genome Sequence and Characterisation of Peribacillus sp. Strain AS_2, a Bacterial Endophyte Isolated from Alectra sessiliflora Biodegradation of Free Cyanide by a New Isolated Alkaliphilic Bacillus licheniformis Strain Bioactive Diepoxy Metabolites and Highly Oxygenated Triterpenoids from Marine and Plant-Derived Bacteria and Fungi
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1