Treatment of Hot Wash Liquor using Fly Ash

S. Sivamani, M. Kavya, V. Vinusha
{"title":"Treatment of Hot Wash Liquor using Fly Ash","authors":"S. Sivamani, M. Kavya, V. Vinusha","doi":"10.53623/tasp.v2i1.53","DOIUrl":null,"url":null,"abstract":"Textile industries are the second largest water-consuming industries, next to agriculture. This research is aimed at investigating the utilization of fly ash as a low-cost adsorbent to treat hot wash liquor by employing one factor at a time. Contact time, effluent dosage, pH, mass of adsorbent, temperature, particle size, and agitation speed have been varied to find the optimum conditions for dye removal from hot wash liquor by fly ash. The results from the sorption process show that the maximum dye removal of 56.07% has been obtained at a time of 5 min, an effluent to water ratio of 9:1, pH of 11, an adsorbent dosage of 0.55 g/mL, a temperature of 27 °C, a fly ash particle size of 128 m and an agitation speed of 100 rpm. The analysis of the results was performed through adsorption capacity and percentage colour removal. Hence, the results suggested that fly ash could be used as an effective adsorbent for treating dyehouse effluents.","PeriodicalId":23323,"journal":{"name":"Tropical Aquatic and Soil Pollution","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Aquatic and Soil Pollution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53623/tasp.v2i1.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Textile industries are the second largest water-consuming industries, next to agriculture. This research is aimed at investigating the utilization of fly ash as a low-cost adsorbent to treat hot wash liquor by employing one factor at a time. Contact time, effluent dosage, pH, mass of adsorbent, temperature, particle size, and agitation speed have been varied to find the optimum conditions for dye removal from hot wash liquor by fly ash. The results from the sorption process show that the maximum dye removal of 56.07% has been obtained at a time of 5 min, an effluent to water ratio of 9:1, pH of 11, an adsorbent dosage of 0.55 g/mL, a temperature of 27 °C, a fly ash particle size of 128 m and an agitation speed of 100 rpm. The analysis of the results was performed through adsorption capacity and percentage colour removal. Hence, the results suggested that fly ash could be used as an effective adsorbent for treating dyehouse effluents.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
粉煤灰处理热洗液
纺织业是仅次于农业的第二大耗水行业。本研究旨在探讨利用粉煤灰作为低成本吸附剂,单因素处理热洗液。通过对接触时间、出水投加量、pH值、吸附剂质量、温度、粒径、搅拌速度等因素的研究,找到了粉煤灰对热洗液脱色的最佳条件。结果表明,在出水比为9:1、pH为11、吸附剂用量为0.55 g/mL、温度为27℃、粉煤灰粒径为128 m、搅拌速度为100 rpm的条件下,吸附时间为5 min,去除率为56.07%。通过吸附量和去色率对结果进行分析。综上所述,粉煤灰可作为一种有效的吸附剂处理染料废水。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Microplastics and Antibiotics in Aquatic Environments: A Review of Their Interactions and Ecotoxicological Implications Assessing the Impact of Pharmaceutical Contamination in Malaysian Groundwater: Risks, Modelling, and Remediation Strategies Stabilization of Pb, Cu, and Zn in Phytoaccumulator Ash in Calcined Clay-based Geopolymers and Potential Application Biodegradation of Chlorpyrifos by Microbes: A Review Phytoremediation with Sunflower (Helionthus annus) and Its Capacity for Cadmium Removal in Contaminated Soils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1