Comparison of parameter estimation methods for crop models

Agronomie Pub Date : 2004-09-01 DOI:10.1051/AGRO:2004033
Marie Tremblay, D. Wallach
{"title":"Comparison of parameter estimation methods for crop models","authors":"Marie Tremblay, D. Wallach","doi":"10.1051/AGRO:2004033","DOIUrl":null,"url":null,"abstract":"Crop models are important tools in agronomic research, a major use being to make predictions. A proper parameter estimation method is necessary to ensure accurate predictions. Until now studies have focused on the application of a particular estimation method and few comparisons of different methods are available. In this paper, we compare several parameter estimation methods, related, on the one hand, to model selection, and on the other, to ridge regression based on an analogy to a Bayesian approach. The different methods are applied to a simplified crop model derived from the STICS model, using simulated data. The criteria for comparison are prediction error and errors in the parameter estimates. Among the methods of model comparison a version of the Schwarz criterion, corrected for small samples and with maximum and minimum bounds for each parameter, is the preferred method. Ridge regression is found to be superior to this best method of model selection.","PeriodicalId":7644,"journal":{"name":"Agronomie","volume":"8 1","pages":"351-365"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/AGRO:2004033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

Abstract

Crop models are important tools in agronomic research, a major use being to make predictions. A proper parameter estimation method is necessary to ensure accurate predictions. Until now studies have focused on the application of a particular estimation method and few comparisons of different methods are available. In this paper, we compare several parameter estimation methods, related, on the one hand, to model selection, and on the other, to ridge regression based on an analogy to a Bayesian approach. The different methods are applied to a simplified crop model derived from the STICS model, using simulated data. The criteria for comparison are prediction error and errors in the parameter estimates. Among the methods of model comparison a version of the Schwarz criterion, corrected for small samples and with maximum and minimum bounds for each parameter, is the preferred method. Ridge regression is found to be superior to this best method of model selection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
作物模型参数估计方法的比较
作物模型是农艺研究的重要工具,主要用途是进行预测。正确的参数估计方法是保证准确预测的必要条件。到目前为止,研究主要集中在某一特定估计方法的应用上,很少有不同方法的比较。在本文中,我们比较了几种参数估计方法,这些方法一方面与模型选择有关,另一方面与基于类比贝叶斯方法的脊回归有关。利用模拟数据,将不同的方法应用于由STICS模型导出的简化作物模型。比较的标准是预测误差和参数估计误差。在模型比较的方法中,优选的方法是针对小样本进行修正的Schwarz准则,该准则对每个参数都有最大值和最小限值。岭回归被发现优于这种最佳的模型选择方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nitrogen fertilizer value of sewage sludge co-composts Hyperspectral characteristic analysis of a developing cotton canopy under different nitrogen treatments Simulation of individual leaf areas in grain sorghum Mill wastewater and olive pomace compost as amendments for rye-grass Long-term impacts of extensification of grassland management on biodiversity and productivity in upland areas. A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1