{"title":"Advancements in Microarray Utility for Detection and Tracking of Foodborne Microbes in the Genomic Era","authors":"Baoguang Li, I. Patel, B. Tall, C. Elkins","doi":"10.4172/2379-1764.1000239","DOIUrl":null,"url":null,"abstract":"Outbreaks caused by foodborne microbes pose serious public health and food safety concerns worldwide. There is a great demand for rapid, sensitive and high-throughput methods to detect and track these pathogens in food, water and other environments. Recent advances in DNA genomic technology have enabled high-throughput analyses of strains by capturing total genomic content of strains and with concomitant comparative phylogenies. Microarrays are particularly adept for distilling large amounts of genomic DNA sequence information such as the gene(s) or genetic traits of hundreds of foodborne isolates in a single experiment. Hence, over the past two decades, microarray technology has advanced tremendously due to accessibility to thousands of complete and draft microbial genomes and this progress has led to the design and manufacturing of newer microarrays which can now identify gene sequence variations down to a single nucleotide polymorphism. DNA microarray remains a useful tool for rapid and refined genomic analysis of foodborne microbes. In this review, we will primarily focus our discussion on pathogen detection, serotype identification and tracking the genetic diversity and source of contamination of respective foodborne strains with our first-hand experience in using this technology.","PeriodicalId":7277,"journal":{"name":"Advanced techniques in biology & medicine","volume":"7 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced techniques in biology & medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2379-1764.1000239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Outbreaks caused by foodborne microbes pose serious public health and food safety concerns worldwide. There is a great demand for rapid, sensitive and high-throughput methods to detect and track these pathogens in food, water and other environments. Recent advances in DNA genomic technology have enabled high-throughput analyses of strains by capturing total genomic content of strains and with concomitant comparative phylogenies. Microarrays are particularly adept for distilling large amounts of genomic DNA sequence information such as the gene(s) or genetic traits of hundreds of foodborne isolates in a single experiment. Hence, over the past two decades, microarray technology has advanced tremendously due to accessibility to thousands of complete and draft microbial genomes and this progress has led to the design and manufacturing of newer microarrays which can now identify gene sequence variations down to a single nucleotide polymorphism. DNA microarray remains a useful tool for rapid and refined genomic analysis of foodborne microbes. In this review, we will primarily focus our discussion on pathogen detection, serotype identification and tracking the genetic diversity and source of contamination of respective foodborne strains with our first-hand experience in using this technology.