{"title":"A new spectral estimation-based feature extraction method for vehicle classification in distributed sensor networks","authors":"Erdem Köse, A. K. Hocaoglu","doi":"10.3906/ELK-1807-49","DOIUrl":null,"url":null,"abstract":"Ground vehicle detection and classification with distributed sensor networks is of growing interest for border security. Different sensing modalities including electro-optical, seismic, and acoustic were evaluated individually and in combination to develop a more efficient system. Despite previous works that mostly studied frequency-domain features and acoustic sensors, in this work we analyzed the classification performance for both frequency and time-domain features and seismic and acoustic modalities. Despite their infrequent use, we show that when fused with frequency-domain features, time-domain features improve the classification performance and reduce the false positive rate, especially for seismic signals. We investigated the performance of seismic sensors and showed that the classification performance varies with the type of road due to the distinct spectral characteristics of the medium. Our proposed classifier fuses time and frequency-domain features and acoustic and seismic modalities to achieve the highest classification rate of 98.6% using a relatively small number of features.","PeriodicalId":49410,"journal":{"name":"Turkish Journal of Electrical Engineering and Computer Sciences","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Electrical Engineering and Computer Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3906/ELK-1807-49","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 8
Abstract
Ground vehicle detection and classification with distributed sensor networks is of growing interest for border security. Different sensing modalities including electro-optical, seismic, and acoustic were evaluated individually and in combination to develop a more efficient system. Despite previous works that mostly studied frequency-domain features and acoustic sensors, in this work we analyzed the classification performance for both frequency and time-domain features and seismic and acoustic modalities. Despite their infrequent use, we show that when fused with frequency-domain features, time-domain features improve the classification performance and reduce the false positive rate, especially for seismic signals. We investigated the performance of seismic sensors and showed that the classification performance varies with the type of road due to the distinct spectral characteristics of the medium. Our proposed classifier fuses time and frequency-domain features and acoustic and seismic modalities to achieve the highest classification rate of 98.6% using a relatively small number of features.
期刊介绍:
The Turkish Journal of Electrical Engineering & Computer Sciences is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK)
Accepts English-language manuscripts in the areas of power and energy, environmental sustainability and energy efficiency, electronics, industry applications, control systems, information and systems, applied electromagnetics, communications, signal and image processing, tomographic image reconstruction, face recognition, biometrics, speech processing, video processing and analysis, object recognition, classification, feature extraction, parallel and distributed computing, cognitive systems, interaction, robotics, digital libraries and content, personalized healthcare, ICT for mobility, sensors, and artificial intelligence.
Contribution is open to researchers of all nationalities.