Mohan Kumar, Steffen Maass, Sanidhya Kashyap, J. Veselý, Zi Yan, Taesoo Kim, A. Bhattacharjee, T. Krishna
{"title":"LATR","authors":"Mohan Kumar, Steffen Maass, Sanidhya Kashyap, J. Veselý, Zi Yan, Taesoo Kim, A. Bhattacharjee, T. Krishna","doi":"10.1145/3296957.3173198","DOIUrl":null,"url":null,"abstract":"We propose LATR-lazy TLB coherence-a software-based TLB shootdown mechanism that can alleviate the overhead of the synchronous TLB shootdown mechanism in existing operating systems. By handling the TLB coherence in a lazy fashion, LATR can avoid expensive IPIs which are required for delivering a shootdown signal to remote cores, and the performance overhead of associated interrupt handlers. Therefore, virtual memory operations, such as free and page migration operations, can benefit significantly from LATR's mechanism. For example, LATR improves the latency of munmap() by 70.8% on a 2-socket machine, a widely used configuration in modern data centers. Real-world, performance-critical applications such as web servers can also benefit from LATR: without any application-level changes, LATR improves Apache by 59.9% compared to Linux, and by 37.9% compared to ABIS, a highly optimized, state-of-the-art TLB coherence technique.","PeriodicalId":50923,"journal":{"name":"ACM Sigplan Notices","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Sigplan Notices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3296957.3173198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1
Abstract
We propose LATR-lazy TLB coherence-a software-based TLB shootdown mechanism that can alleviate the overhead of the synchronous TLB shootdown mechanism in existing operating systems. By handling the TLB coherence in a lazy fashion, LATR can avoid expensive IPIs which are required for delivering a shootdown signal to remote cores, and the performance overhead of associated interrupt handlers. Therefore, virtual memory operations, such as free and page migration operations, can benefit significantly from LATR's mechanism. For example, LATR improves the latency of munmap() by 70.8% on a 2-socket machine, a widely used configuration in modern data centers. Real-world, performance-critical applications such as web servers can also benefit from LATR: without any application-level changes, LATR improves Apache by 59.9% compared to Linux, and by 37.9% compared to ABIS, a highly optimized, state-of-the-art TLB coherence technique.
期刊介绍:
The ACM Special Interest Group on Programming Languages explores programming language concepts and tools, focusing on design, implementation, practice, and theory. Its members are programming language developers, educators, implementers, researchers, theoreticians, and users. SIGPLAN sponsors several major annual conferences, including the Symposium on Principles of Programming Languages (POPL), the Symposium on Principles and Practice of Parallel Programming (PPoPP), the Conference on Programming Language Design and Implementation (PLDI), the International Conference on Functional Programming (ICFP), the International Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), as well as more than a dozen other events of either smaller size or in-cooperation with other SIGs. The monthly "ACM SIGPLAN Notices" publishes proceedings of selected sponsored events and an annual report on SIGPLAN activities. Members receive discounts on conference registrations and free access to ACM SIGPLAN publications in the ACM Digital Library. SIGPLAN recognizes significant research and service contributions of individuals with a variety of awards, supports current members through the Professional Activities Committee, and encourages future programming language enthusiasts with frequent Programming Languages Mentoring Workshops (PLMW).