{"title":"One-pot amination of aldehydes and ketones over heterogeneous catalysts for production of secondary amines","authors":"P. Mäki-Arvela, I. Simakova, D. Murzin","doi":"10.1080/01614940.2021.1942689","DOIUrl":null,"url":null,"abstract":"ABSTRACT This review summarizes the recent studies on the synthesis of secondary amines by one-pot amination of aldehydes and ketones over heterogeneous catalysts. Amines are widely applied as the key intermediates in chemical industry for the synthesis of various commodities such as agrochemicals, drugs, detergents, lubricants, food-additives and polymers. Direct catalytic reductive amination of carbonyl compounds was considered which generally includes two steps: (i) formation of imines by interactions of aldehydes or ketones with amines, and (ii) subsequent hydrogenation of imines. Synthesis of secondary amines from carbonyl compounds and amines generated in situ under reaction conditions from their progenitors, e.g., respectively, alcohols or nitro-compounds, is also discussed in detail. Recent progress in application of hydrogen sources alternative to gaseous H2, such as formic acid, NaBH4, CO and water, favored development of metal-free catalysts including solid acid catalysts. The review addresses the scope of the amination reaction with aldehydes/ketones and nitro/amine compounds of different structure, the effect of the solvent, reaction conditions and catalyst properties. In addition, catalyst regeneration and reuse, kinetic regularities and kinetic modeling with an emphasis on the continuous mode of one-pot amination have been systematically summarized and discussed. It is suggested that the future work should focus on revealing the role of the catalytically active sites addressing their acid–base properties and the correlation between catalyst properties and the reaction performance, elucidating kinetic parameters and designing feasible reactor system for further industrial implementation.","PeriodicalId":9647,"journal":{"name":"Catalysis Reviews","volume":"1 1","pages":"501 - 568"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01614940.2021.1942689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
ABSTRACT This review summarizes the recent studies on the synthesis of secondary amines by one-pot amination of aldehydes and ketones over heterogeneous catalysts. Amines are widely applied as the key intermediates in chemical industry for the synthesis of various commodities such as agrochemicals, drugs, detergents, lubricants, food-additives and polymers. Direct catalytic reductive amination of carbonyl compounds was considered which generally includes two steps: (i) formation of imines by interactions of aldehydes or ketones with amines, and (ii) subsequent hydrogenation of imines. Synthesis of secondary amines from carbonyl compounds and amines generated in situ under reaction conditions from their progenitors, e.g., respectively, alcohols or nitro-compounds, is also discussed in detail. Recent progress in application of hydrogen sources alternative to gaseous H2, such as formic acid, NaBH4, CO and water, favored development of metal-free catalysts including solid acid catalysts. The review addresses the scope of the amination reaction with aldehydes/ketones and nitro/amine compounds of different structure, the effect of the solvent, reaction conditions and catalyst properties. In addition, catalyst regeneration and reuse, kinetic regularities and kinetic modeling with an emphasis on the continuous mode of one-pot amination have been systematically summarized and discussed. It is suggested that the future work should focus on revealing the role of the catalytically active sites addressing their acid–base properties and the correlation between catalyst properties and the reaction performance, elucidating kinetic parameters and designing feasible reactor system for further industrial implementation.