Kernel-Optimized Based Machine for Image Recognition

Yun-Heng Wang, P. Fu
{"title":"Kernel-Optimized Based Machine for Image Recognition","authors":"Yun-Heng Wang, P. Fu","doi":"10.1109/RVSP.2013.29","DOIUrl":null,"url":null,"abstract":"Kernel learning is an important research topic in the machine learning area. Research on self-optimization learning of kernel function and its parameter has an important theoretical value for solving the kernel selection problem widely endured by kernel learning machine, and has the same important practical meaning for the improving of kernel learning systems. In this paper, we focus on two schemes: kernel optimization algorithm and procedure, the framework of kernel self-optimization learning. Finally, the proposed kernel optimization is applied into popular kernel learning methods including KPCA, KDA and KLPP. Simulation results demonstrate that the kernel self-optimization is feasible to improve various kernel-based learning methods.","PeriodicalId":6585,"journal":{"name":"2013 Second International Conference on Robot, Vision and Signal Processing","volume":"129 1","pages":"98-101"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Second International Conference on Robot, Vision and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RVSP.2013.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Kernel learning is an important research topic in the machine learning area. Research on self-optimization learning of kernel function and its parameter has an important theoretical value for solving the kernel selection problem widely endured by kernel learning machine, and has the same important practical meaning for the improving of kernel learning systems. In this paper, we focus on two schemes: kernel optimization algorithm and procedure, the framework of kernel self-optimization learning. Finally, the proposed kernel optimization is applied into popular kernel learning methods including KPCA, KDA and KLPP. Simulation results demonstrate that the kernel self-optimization is feasible to improve various kernel-based learning methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于核优化的图像识别机器
核学习是机器学习领域的一个重要研究课题。核函数及其参数的自优化学习研究对于解决核学习机普遍面临的核选择问题具有重要的理论价值,同时对于改进核学习系统也具有重要的现实意义。本文主要研究了核优化算法和核自优化学习框架。最后,将提出的核优化方法应用于KPCA、KDA和KLPP等常用的核学习方法。仿真结果表明,核自优化对各种基于核的学习方法的改进是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Permutation of Image Encryption System Based on Block Cipher and Stream Cipher Encryption Algorithm Palmprint Recognition Method Based on Adaptive Fusion A Collaborative Representation Based Two-Phase Face Recognition Algorithm Applying Interactive Artificial Bee Colony to Construct the Stock Portfolio Adaptive Resource Allocation for OFDM-Based Single-Relay Cooperative Communication Systems over Rayleigh Fading Channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1