A nonautonomous model for the effects of refuge and additional food on the dynamics of phytoplankton-zooplankton system

IF 3.1 3区 环境科学与生态学 Q2 ECOLOGY Ecological Complexity Pub Date : 2021-03-01 DOI:10.1016/j.ecocom.2021.100927
Arindam Mandal , Pankaj Kumar Tiwari , Samares Pal
{"title":"A nonautonomous model for the effects of refuge and additional food on the dynamics of phytoplankton-zooplankton system","authors":"Arindam Mandal ,&nbsp;Pankaj Kumar Tiwari ,&nbsp;Samares Pal","doi":"10.1016/j.ecocom.2021.100927","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a mathematical model for the interacting dynamics of phytoplankton-zooplankton is proposed. The phytoplankton have the ability to take refuge and release toxins to avoid over predation by zooplankton. The zooplankton are provided some additional food to persist in the system. The phytoplankton are assumed to be affected directly by external toxic substances whereas zooplankton are affected indirectly by feeding on the affected phytoplankton. We incorporate seasonal variations in the model, assuming the level of nutrients, refuge and the rate of toxins released by phytoplankton as functions of time. Our results show that when high toxicity and refuge cause extinction of zooplankton, providing additional food supports the survival of zooplankton population and controls the phytoplankton population. Prey refuge and additional food have stabilizing effects on the system; higher values of the former results in extinction of zooplankton whereas phytoplankton disappear for larger values of the latter. Seasonality in nutrients level and toxins released by phytoplankton generate higher periodic solutions while time-dependent refuge of phytoplankton causes the occurrence of a period-three solution. The possibility of finding additional food for zooplankton may push back the ecosystem to a simple stable state from a complex dynamics.</p></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":"46 ","pages":"Article 100927"},"PeriodicalIF":3.1000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ecocom.2021.100927","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Complexity","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476945X21000209","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper, a mathematical model for the interacting dynamics of phytoplankton-zooplankton is proposed. The phytoplankton have the ability to take refuge and release toxins to avoid over predation by zooplankton. The zooplankton are provided some additional food to persist in the system. The phytoplankton are assumed to be affected directly by external toxic substances whereas zooplankton are affected indirectly by feeding on the affected phytoplankton. We incorporate seasonal variations in the model, assuming the level of nutrients, refuge and the rate of toxins released by phytoplankton as functions of time. Our results show that when high toxicity and refuge cause extinction of zooplankton, providing additional food supports the survival of zooplankton population and controls the phytoplankton population. Prey refuge and additional food have stabilizing effects on the system; higher values of the former results in extinction of zooplankton whereas phytoplankton disappear for larger values of the latter. Seasonality in nutrients level and toxins released by phytoplankton generate higher periodic solutions while time-dependent refuge of phytoplankton causes the occurrence of a period-three solution. The possibility of finding additional food for zooplankton may push back the ecosystem to a simple stable state from a complex dynamics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
避难所和额外食物对浮游植物-浮游动物系统动力学影响的非自治模型
本文建立了浮游植物-浮游动物相互作用动力学的数学模型。浮游植物有避难和释放毒素的能力,以避免被浮游动物过度捕食。浮游动物被提供了一些额外的食物来维持系统。浮游植物被认为直接受到外源性有毒物质的影响,而浮游动物则是通过以受影响的浮游植物为食而间接受到影响。我们在模型中纳入了季节变化,假设营养物水平、避难所和浮游植物释放毒素的速度是时间的函数。我们的研究结果表明,当高毒性和避难所导致浮游动物灭绝时,提供额外的食物支持浮游动物种群的生存,并控制浮游植物种群。猎物庇护所和额外食物对系统有稳定作用;前者的值越高,浮游动物就会灭绝,后者的值越大,浮游植物就会消失。浮游植物的养分水平和毒素释放的季节性产生较高的周期解,而浮游植物的时间依赖性避难导致第三周期解的发生。为浮游动物找到额外食物的可能性可能会将生态系统从复杂的动态状态推回到简单的稳定状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecological Complexity
Ecological Complexity 环境科学-生态学
CiteScore
7.10
自引率
0.00%
发文量
24
审稿时长
3 months
期刊介绍: Ecological Complexity is an international journal devoted to the publication of high quality, peer-reviewed articles on all aspects of biocomplexity in the environment, theoretical ecology, and special issues on topics of current interest. The scope of the journal is wide and interdisciplinary with an integrated and quantitative approach. The journal particularly encourages submission of papers that integrate natural and social processes at appropriately broad spatio-temporal scales. Ecological Complexity will publish research into the following areas: • All aspects of biocomplexity in the environment and theoretical ecology • Ecosystems and biospheres as complex adaptive systems • Self-organization of spatially extended ecosystems • Emergent properties and structures of complex ecosystems • Ecological pattern formation in space and time • The role of biophysical constraints and evolutionary attractors on species assemblages • Ecological scaling (scale invariance, scale covariance and across scale dynamics), allometry, and hierarchy theory • Ecological topology and networks • Studies towards an ecology of complex systems • Complex systems approaches for the study of dynamic human-environment interactions • Using knowledge of nonlinear phenomena to better guide policy development for adaptation strategies and mitigation to environmental change • New tools and methods for studying ecological complexity
期刊最新文献
Enhancing maximum sustainable yield in a patchy prey–predator environment A scale-invariant method for quantifying the regularity of environmental spatial patterns Assessing the ecological complexity and uncertainty of predicting forest ecosystem services under climate change Transitive and intransitive structures in competition-based ecological communities The central importance of the honeybee (Apis mellifera L.) within plant-bee interaction networks decreases along a Neotropical elevational gradient
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1