D. Singh, M. Scheurer, A. Hillier, D. Adroja, R. Singh
{"title":"Time-reversal-symmetry breaking and unconventional pairing in the noncentrosymmetric superconductor \nLa7Rh3","authors":"D. Singh, M. Scheurer, A. Hillier, D. Adroja, R. Singh","doi":"10.1103/physrevb.102.134511","DOIUrl":null,"url":null,"abstract":"Noncentrosymmetric superconductors have sparked significant research interests due to their exciting properties, such as the admixture of spin-singlet and spin-triplet Cooper pairs. Here we report $\\mu$SR and thermodynamic measurements on the noncentrosymmetric superconductor La7Rh3 which indicate a fully established superconducting gap and spontaneous time-reversal-symmetry breaking at the onset of superconductivity. We show that our results pose severe constraints on any microscopic theory of superconductivity in the system. A symmetry analysis identifies ground states compatible with time-reversal-symmetry breaking and the resulting gap functions are discussed. Furthermore, general energetic considerations indicate the relevance of electron-electron interactions for the pairing mechanism, in accordance with hints of spin-fluctuations revealed in susceptibility measurements.","PeriodicalId":8514,"journal":{"name":"arXiv: Superconductivity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Superconductivity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevb.102.134511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Noncentrosymmetric superconductors have sparked significant research interests due to their exciting properties, such as the admixture of spin-singlet and spin-triplet Cooper pairs. Here we report $\mu$SR and thermodynamic measurements on the noncentrosymmetric superconductor La7Rh3 which indicate a fully established superconducting gap and spontaneous time-reversal-symmetry breaking at the onset of superconductivity. We show that our results pose severe constraints on any microscopic theory of superconductivity in the system. A symmetry analysis identifies ground states compatible with time-reversal-symmetry breaking and the resulting gap functions are discussed. Furthermore, general energetic considerations indicate the relevance of electron-electron interactions for the pairing mechanism, in accordance with hints of spin-fluctuations revealed in susceptibility measurements.