Impact of Automated Statistical Downscaling and Delta Downscaling methods on projecting future climate change in the northeast Tibetan Plateau

IF 1.2 4区 地球科学 Q4 ENVIRONMENTAL SCIENCES Climate Research Pub Date : 2021-04-08 DOI:10.3354/CR01634
A. Chen, S. Zhang, Z. Li
{"title":"Impact of Automated Statistical Downscaling and Delta Downscaling methods on projecting future climate change in the northeast Tibetan Plateau","authors":"A. Chen, S. Zhang, Z. Li","doi":"10.3354/CR01634","DOIUrl":null,"url":null,"abstract":"The accuracy of different downscaling methods in projecting future precipitation and air temperature from general circulation models (GCMs) has rarely been addressed with regards to the Tibetan Plateau, and this information is important for future water resource management in the region. The performance of automated statistical downscaling (ASD) and Delta downscaling methods in predicting precipitation and air temperature was evaluated at 19 meteorological stations in the Qilian Mountains and Hexi Corridor (QM-HC) by comparing with in situ observations from 2006-2015. These comparisons, based on Representative Concentration Pathway 4.5 (RCP4.5), suggest that the difference in annual precipitation between the ASD model and the Delta method is 17 mm. Testing different weights of the 2 downscaling methods indicates that combining the 2 methods results in lower uncertainty. The downscaling of annual precipitation projected by weighting the results of the 2 methods suggested that, based on RCP4.5, precipitation will not increase significantly from 2021-2100 compared to the past (1961-2005) and will fluctuate steadily in the coming decades. These projections are in contrast with previous projections of a significant increase. Air temperature is projected to increase by approximately 0.2°C decade-1 from 2021-2100 according to the weighted average of the ASD model and Delta method based on RCP4.5. This study indicates that management measures based on projected increased precipitation should be carefully reconsidered in different regions.","PeriodicalId":10438,"journal":{"name":"Climate Research","volume":"3 1","pages":"91-110"},"PeriodicalIF":1.2000,"publicationDate":"2021-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3354/CR01634","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 2

Abstract

The accuracy of different downscaling methods in projecting future precipitation and air temperature from general circulation models (GCMs) has rarely been addressed with regards to the Tibetan Plateau, and this information is important for future water resource management in the region. The performance of automated statistical downscaling (ASD) and Delta downscaling methods in predicting precipitation and air temperature was evaluated at 19 meteorological stations in the Qilian Mountains and Hexi Corridor (QM-HC) by comparing with in situ observations from 2006-2015. These comparisons, based on Representative Concentration Pathway 4.5 (RCP4.5), suggest that the difference in annual precipitation between the ASD model and the Delta method is 17 mm. Testing different weights of the 2 downscaling methods indicates that combining the 2 methods results in lower uncertainty. The downscaling of annual precipitation projected by weighting the results of the 2 methods suggested that, based on RCP4.5, precipitation will not increase significantly from 2021-2100 compared to the past (1961-2005) and will fluctuate steadily in the coming decades. These projections are in contrast with previous projections of a significant increase. Air temperature is projected to increase by approximately 0.2°C decade-1 from 2021-2100 according to the weighted average of the ASD model and Delta method based on RCP4.5. This study indicates that management measures based on projected increased precipitation should be carefully reconsidered in different regions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自动统计降尺度和三角洲降尺度方法对青藏高原东北部未来气候变化预测的影响
不同降尺度方法对青藏高原大气环流模式预测未来降水和气温的准确性研究很少,这些信息对该地区未来的水资源管理具有重要意义。通过与2006-2015年祁连山和河西走廊19个气象站的现场观测数据对比,评价了自动统计降尺度(ASD)和Delta降尺度方法在预测降水和气温中的效果。这些基于代表性浓度路径4.5 (RCP4.5)的比较表明,ASD模式与Delta方法的年降水量差异为17 mm。对两种降尺度方法的不同权重进行了测试,结果表明,两种降尺度方法相结合的不确定度较低。通过对两种方法的结果进行加权预估的年降水量降尺度表明,基于RCP4.5的降水量在2021-2100年期间与过去(1961-2005年)相比不会显著增加,并将在未来几十年稳定波动。这些预测与以前预测的大幅增加形成对比。根据基于RCP4.5的ASD模式和Delta方法的加权平均值,预计2021-2100年气温将上升约0.2°C。该研究表明,在不同地区应仔细考虑基于预估降水增加的管理措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Climate Research
Climate Research 地学-环境科学
CiteScore
2.90
自引率
9.10%
发文量
25
审稿时长
3 months
期刊介绍: Basic and applied research devoted to all aspects of climate – past, present and future. Investigation of the reciprocal influences between climate and organisms (including climate effects on individuals, populations, ecological communities and entire ecosystems), as well as between climate and human societies. CR invites high-quality Research Articles, Reviews, Notes and Comments/Reply Comments (see Clim Res 20:187), CR SPECIALS and Opinion Pieces. For details see the Guidelines for Authors. Papers may be concerned with: -Interactions of climate with organisms, populations, ecosystems, and human societies -Short- and long-term changes in climatic elements, such as humidity and precipitation, temperature, wind velocity and storms, radiation, carbon dioxide, trace gases, ozone, UV radiation -Human reactions to climate change; health, morbidity and mortality; clothing and climate; indoor climate management -Climate effects on biotic diversity. Paleoecology, species abundance and extinction, natural resources and water levels -Historical case studies, including paleoecology and paleoclimatology -Analysis of extreme climatic events, their physicochemical properties and their time–space dynamics. Climatic hazards -Land-surface climatology. Soil degradation, deforestation, desertification -Assessment and implementation of adaptations and response options -Applications of climate models and modelled future climate scenarios. Methodology in model development and application
期刊最新文献
Spatio-temporal changes of heat and cold wave patterns in western Iran Adoption of adaptive behavior and its peer effects on grain growers in Jiangxi Province, China Improving factor efficiency under climate change through adaptive behavior: analysis of genetically modified insect-resistant cotton Farmers’ adaptation to climate change and water consumption in southwest Iran: application of switching regression Adaptation to climate impacts on rice production: an analysis of dry zone farmers in central Myanmar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1