{"title":"DYNAMICS OF GAS-LIQUID-SOLID THREE PHASE FLOW IN SUBMERGED COMBUSTION PLANT","authors":"V. Demin, Aleksey V. Kostyrya","doi":"10.36807/1998-9849-2022-63-89-78-83","DOIUrl":null,"url":null,"abstract":"The necessity of study of the flow structure in submerged combustion apparatuses was substantiated. A three-phase flow in a laboratory plant with a submerged burner was considered. Modeling thermal mode of operation without vapor phase formation was analyzed. The conclusion was made about the dominance of laminar motion in most of the workspace and the determining significance of the gas phase influence on the structure and time behavior of hydrodynamic flows. The conclusion was made about the suitability of the developed physical and mathematical model for the numerical study of full-size devices.","PeriodicalId":9467,"journal":{"name":"Bulletin of the Saint Petersburg State Institute of Technology (Technical University)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Saint Petersburg State Institute of Technology (Technical University)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36807/1998-9849-2022-63-89-78-83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The necessity of study of the flow structure in submerged combustion apparatuses was substantiated. A three-phase flow in a laboratory plant with a submerged burner was considered. Modeling thermal mode of operation without vapor phase formation was analyzed. The conclusion was made about the dominance of laminar motion in most of the workspace and the determining significance of the gas phase influence on the structure and time behavior of hydrodynamic flows. The conclusion was made about the suitability of the developed physical and mathematical model for the numerical study of full-size devices.