COMPARATIVE ANALYSIS OF CLASSIFICATION APPROACHES FOR BREAST CANCER

T. Asfaw
{"title":"COMPARATIVE ANALYSIS OF CLASSIFICATION APPROACHES FOR BREAST CANCER","authors":"T. Asfaw","doi":"10.34218/ijcet.10.4.2019.002","DOIUrl":null,"url":null,"abstract":"Breast cancer is one of the greatest common diseases among women in Africa and worldwide. Accurate and early diagnosis is very significant phase in therapy and action. However, it is not an easy one due to some doubts in detection of breast cancer. Machine learning helps us to extract information and knowledge from this the basis of past experiences and detect hard-to-perceive pattern from large and noisy dataset. This paper compares and analysis the performance of machine learning algorithms, namely Decision Tree (DT), Logistic Regression (LR), Naïve Bayes (NB), and K-Nearest Neighbors (KNN) for detecting breast cancer. The data set used for comparison was from UCI Wisconsin original breast cancer data set. The result outcome shows that Logistic Regression performs better and classification accuracy is 96.93%.","PeriodicalId":38492,"journal":{"name":"International Journal of Computer Aided Engineering and Technology","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Aided Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34218/ijcet.10.4.2019.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

Breast cancer is one of the greatest common diseases among women in Africa and worldwide. Accurate and early diagnosis is very significant phase in therapy and action. However, it is not an easy one due to some doubts in detection of breast cancer. Machine learning helps us to extract information and knowledge from this the basis of past experiences and detect hard-to-perceive pattern from large and noisy dataset. This paper compares and analysis the performance of machine learning algorithms, namely Decision Tree (DT), Logistic Regression (LR), Naïve Bayes (NB), and K-Nearest Neighbors (KNN) for detecting breast cancer. The data set used for comparison was from UCI Wisconsin original breast cancer data set. The result outcome shows that Logistic Regression performs better and classification accuracy is 96.93%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
乳腺癌分型方法的比较分析
乳腺癌是非洲和全世界妇女最常见的疾病之一。准确、早期的诊断是治疗和行动中非常重要的阶段。然而,由于对乳腺癌的检测存在一些疑问,这并不是一件容易的事。机器学习帮助我们从过去经验的基础上提取信息和知识,并从庞大而嘈杂的数据集中检测难以感知的模式。本文比较和分析了机器学习算法,即决策树(DT)、逻辑回归(LR)、Naïve贝叶斯(NB)和k近邻(KNN)在乳腺癌检测中的性能。用于比较的数据集来自UCI威斯康辛原始乳腺癌数据集。结果表明,Logistic回归方法具有较好的分类效果,分类准确率为96.93%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
90
期刊介绍: IJCAET is a journal of new knowledge, reporting research and applications which highlight the opportunities and limitations of computer aided engineering and technology in today''s lifecycle-oriented, knowledge-based era of production. Contributions that deal with both academic research and industrial practices are included. IJCAET is designed to be a multi-disciplinary, fully refereed and international journal.
期刊最新文献
Robotic Motion Control via P300-based Brain-Computer Interface System Comparison of Stereo Matching Algorithms for the Development of Disparity Map A study on media players from an accessibility perspective Plates with functionally graded materials under thermo-mechanical loading: a study Optimisation of the delay in the portfolio construction using GSA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1