Huatao Xu, Pengfei Zhou, R. Tan, Mo Li, Guobin Shen
{"title":"LIMU-BERT","authors":"Huatao Xu, Pengfei Zhou, R. Tan, Mo Li, Guobin Shen","doi":"10.1145/3568113.3568124","DOIUrl":null,"url":null,"abstract":"Deep learning greatly empowers Inertial Measurement Unit (IMU) sensors for a wide range of sensing applications. Most existing works require substantial amounts of wellcurated labeled data to train IMU-based sensing models, which incurs high annotation and training costs. Compared with labeled data, unlabeled IMU data are abundant and easily accessible. This article presents a novel representation learning model that can make use of unlabeled IMU data and extract generalized rather than task-specific features. With the representations learned via our model, task-specific models trained with limited labeled samples can achieve superior performances in typical IMU sensing applications, such as Human Activity Recognition (HAR).","PeriodicalId":29918,"journal":{"name":"GetMobile-Mobile Computing & Communications Review","volume":"10 1","pages":"39 - 42"},"PeriodicalIF":0.7000,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GetMobile-Mobile Computing & Communications Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3568113.3568124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 1
Abstract
Deep learning greatly empowers Inertial Measurement Unit (IMU) sensors for a wide range of sensing applications. Most existing works require substantial amounts of wellcurated labeled data to train IMU-based sensing models, which incurs high annotation and training costs. Compared with labeled data, unlabeled IMU data are abundant and easily accessible. This article presents a novel representation learning model that can make use of unlabeled IMU data and extract generalized rather than task-specific features. With the representations learned via our model, task-specific models trained with limited labeled samples can achieve superior performances in typical IMU sensing applications, such as Human Activity Recognition (HAR).