{"title":"Mimicking DNA Functions with Abiotic, Sequence-Defined Polymers","authors":"S. Leguizamon, T. F. Scott","doi":"10.1080/15583724.2021.2014519","DOIUrl":null,"url":null,"abstract":"Abstract Advances in synthetic chemistry have enabled abiotic, sequence defined polymers to imitate the structures and functions once exclusive to DNA. Indeed, the vast library of accessible backbones and pendant-group functionalities afford synthetic polymers an advantage over DNA in emerging applications as they can be tailored for stability or performance. Moreover, novel methodologies for sequencing and conjugation have been leveraged to elevate the versatility of discrete macromolecules. This review highlights abiotic, sequence-defined polymers in their capacity to mimic the primary functions of DNA – data storage and retrieval, sequence-specific self-assembly of duplexes, and replication and synthetic templating of new macromolecules.","PeriodicalId":20326,"journal":{"name":"Polymer Reviews","volume":"1 1","pages":"626 - 651"},"PeriodicalIF":11.1000,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/15583724.2021.2014519","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract Advances in synthetic chemistry have enabled abiotic, sequence defined polymers to imitate the structures and functions once exclusive to DNA. Indeed, the vast library of accessible backbones and pendant-group functionalities afford synthetic polymers an advantage over DNA in emerging applications as they can be tailored for stability or performance. Moreover, novel methodologies for sequencing and conjugation have been leveraged to elevate the versatility of discrete macromolecules. This review highlights abiotic, sequence-defined polymers in their capacity to mimic the primary functions of DNA – data storage and retrieval, sequence-specific self-assembly of duplexes, and replication and synthetic templating of new macromolecules.
期刊介绍:
Polymer Reviews is a reputable publication that focuses on timely issues within the field of macromolecular science and engineering. The journal features high-quality reviews that have been specifically curated by experts in the field. Topics of particular importance include biomedical applications, organic electronics and photonics, nanostructures, micro- and nano-fabrication, biological molecules (such as DNA, proteins, and carbohydrates), polymers for renewable energy and environmental applications, and interdisciplinary intersections involving polymers.
The articles in Polymer Reviews fall into two main categories. Some articles offer comprehensive and expansive overviews of a particular subject, while others zero in on the author's own research and situate it within the broader scientific landscape. In both types of articles, the aim is to provide readers with valuable insights and advancements in the field of macromolecular science and engineering.