Enhancing Bayesian Approaches in the Cognitive and Neural Sciences via Complex Dynamical Systems Theory

Luis H. Favela, M. J. Amon
{"title":"Enhancing Bayesian Approaches in the Cognitive and Neural Sciences via Complex Dynamical Systems Theory","authors":"Luis H. Favela, M. J. Amon","doi":"10.3390/dynamics3010008","DOIUrl":null,"url":null,"abstract":"In the cognitive and neural sciences, Bayesianism refers to a collection of concepts and methods stemming from various implementations of Bayes’ theorem, which is a formal way to calculate the conditional probability of a hypothesis being true based on prior expectations and updating priors in the face of errors. Bayes’ theorem has been fruitfully applied to describe and explain a wide range of cognitive and neural phenomena (e.g., visual perception and neural population activity) and is at the core of various theories (e.g., predictive processing). Despite these successes, we claim that Bayesianism has two interrelated shortcomings: its calculations and models are predominantly linear and noise is assumed to be random and unstructured versus deterministic. We outline ways that Bayesianism can address those shortcomings: first, by making more central the nonlinearities characteristic of biological cognitive systems, and second, by treating noise not as random and unstructured dynamics, but as the kind of structured nonlinearities of complex dynamical systems (e.g., chaos and fractals). We provide bistable visual percepts as an example of a real-world phenomenon that demonstrates the fruitfulness of integrating complex dynamical systems theory in Bayesian treatments of perception. Doing so facilitates a Bayesianism that is more capable of explaining a number of currently out-of-reach natural phenomena on their own, biologically realistic terms.","PeriodicalId":80276,"journal":{"name":"Dynamics (Pembroke, Ont.)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics (Pembroke, Ont.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/dynamics3010008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the cognitive and neural sciences, Bayesianism refers to a collection of concepts and methods stemming from various implementations of Bayes’ theorem, which is a formal way to calculate the conditional probability of a hypothesis being true based on prior expectations and updating priors in the face of errors. Bayes’ theorem has been fruitfully applied to describe and explain a wide range of cognitive and neural phenomena (e.g., visual perception and neural population activity) and is at the core of various theories (e.g., predictive processing). Despite these successes, we claim that Bayesianism has two interrelated shortcomings: its calculations and models are predominantly linear and noise is assumed to be random and unstructured versus deterministic. We outline ways that Bayesianism can address those shortcomings: first, by making more central the nonlinearities characteristic of biological cognitive systems, and second, by treating noise not as random and unstructured dynamics, but as the kind of structured nonlinearities of complex dynamical systems (e.g., chaos and fractals). We provide bistable visual percepts as an example of a real-world phenomenon that demonstrates the fruitfulness of integrating complex dynamical systems theory in Bayesian treatments of perception. Doing so facilitates a Bayesianism that is more capable of explaining a number of currently out-of-reach natural phenomena on their own, biologically realistic terms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过复杂动力系统理论增强认知和神经科学中的贝叶斯方法
在认知和神经科学中,贝叶斯主义是指源于贝叶斯定理的各种实现的概念和方法的集合,它是一种基于先验期望计算假设为真的条件概率的正式方法,并在面对错误时更新先验。贝叶斯定理已经被卓有成效地应用于描述和解释广泛的认知和神经现象(例如,视觉感知和神经群体活动),并且是各种理论(例如,预测处理)的核心。尽管取得了这些成功,但我们认为贝叶斯主义有两个相互关联的缺点:它的计算和模型主要是线性的,噪声被认为是随机的、非结构化的,而不是确定性的。我们概述了贝叶斯主义可以解决这些缺点的方法:首先,通过使生物认知系统的非线性特征更加集中,其次,通过将噪声不视为随机和非结构化的动力学,而是作为复杂动力系统(例如,混沌和分形)的结构化非线性。我们提供了双稳态视觉感知作为一个现实世界现象的例子,证明了在贝叶斯感知治疗中整合复杂动力系统理论的成果。这样做有利于贝叶斯主义,它更有能力解释一些目前遥不可及的自然现象,从生物学的现实角度来看。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring Transition from Stability to Chaos through Random Matrices Robust Global Trends during Pandemics: Analysing the Interplay of Biological and Social Processes Unveiling Dynamical Symmetries in 2D Chaotic Iterative Maps with Ordinal-Patterns-Based Complexity Quantifiers Thermal Hydraulics Simulation of a Water Spray System for a Cooling Fluid Catalytic Cracking (FCC) Regenerator Investigation of Jamming Phenomenon in a Direct Reduction Furnace Pellet Feed System Using the Discrete Element Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1