Progresses on cryo-tribology: lubrication mechanisms, detection methods and applications

IF 16.1 1区 工程技术 Q1 ENGINEERING, MANUFACTURING International Journal of Extreme Manufacturing Pub Date : 2023-03-09 DOI:10.1088/2631-7990/acc2fa
Wenyan Cui, Hongzhan Chen, Jianxun Zhao, Quan-sheng Ma, Qiang Xu, T. Ma
{"title":"Progresses on cryo-tribology: lubrication mechanisms, detection methods and applications","authors":"Wenyan Cui, Hongzhan Chen, Jianxun Zhao, Quan-sheng Ma, Qiang Xu, T. Ma","doi":"10.1088/2631-7990/acc2fa","DOIUrl":null,"url":null,"abstract":"Tribology at cryogenic temperatures has attracted much attention since the 1950s with the acceleration of its applications in high-tech equipment such as cryogenic wind tunnels, liquid fuel rockets, space infrared telescopes, superconducting devices, and planetary exploration, which require solid lubrication for moving parts at low temperatures down to 4 K in cryogenic liquid, gaseous, or vacuum environments. Herein, the research progress regarding cryo-tribology is reviewed. The tribological properties and mechanisms of solid lubricants listed as carbon materials, molybdenum disulfide, polymers, and polymer-based composites with decreasing temperature are summarized. The friction coefficient increases with decreasing temperature induced by thermally activated processes. The mechanism of transfer film formation should be considered as a significant way to enhance the tribological properties of solid lubricants. In addition, applications of solid lubrication on moving parts under cryogenic conditions, such as spherical plain bearings and roller bearings, are introduced. The technology for tribological testing of materials and bearings at cryogenic temperatures is summarized, where the environmental control, motion and loading realization, as well as friction and wear measurement together in a low-temperature environment, result in the difficulties and challenges of the low-temperature tribotester. In particular, novel technologies and tribotesters have been developed for tribotests and tribological studies of solid lubricants, spherical plain bearings, and roller bearings, overcoming limitations regarding cooling in vacuum and resolution of friction measurement, among others, and concentrating on in-situ observation of friction interface. These not only promote a deep understanding of friction and wear mechanism at low temperatures, but also provide insights into the performance of moving parts or components in cryogenic applications.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":"31 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/acc2fa","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 3

Abstract

Tribology at cryogenic temperatures has attracted much attention since the 1950s with the acceleration of its applications in high-tech equipment such as cryogenic wind tunnels, liquid fuel rockets, space infrared telescopes, superconducting devices, and planetary exploration, which require solid lubrication for moving parts at low temperatures down to 4 K in cryogenic liquid, gaseous, or vacuum environments. Herein, the research progress regarding cryo-tribology is reviewed. The tribological properties and mechanisms of solid lubricants listed as carbon materials, molybdenum disulfide, polymers, and polymer-based composites with decreasing temperature are summarized. The friction coefficient increases with decreasing temperature induced by thermally activated processes. The mechanism of transfer film formation should be considered as a significant way to enhance the tribological properties of solid lubricants. In addition, applications of solid lubrication on moving parts under cryogenic conditions, such as spherical plain bearings and roller bearings, are introduced. The technology for tribological testing of materials and bearings at cryogenic temperatures is summarized, where the environmental control, motion and loading realization, as well as friction and wear measurement together in a low-temperature environment, result in the difficulties and challenges of the low-temperature tribotester. In particular, novel technologies and tribotesters have been developed for tribotests and tribological studies of solid lubricants, spherical plain bearings, and roller bearings, overcoming limitations regarding cooling in vacuum and resolution of friction measurement, among others, and concentrating on in-situ observation of friction interface. These not only promote a deep understanding of friction and wear mechanism at low temperatures, but also provide insights into the performance of moving parts or components in cryogenic applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低温摩擦学研究进展:润滑机理、检测方法及应用
自20世纪50年代以来,低温摩擦学在低温风洞、液体燃料火箭、空间红外望远镜、超导装置和行星探测等高科技设备中的应用加速,引起了人们的广泛关注。这些设备需要在低温液体、气体或真空环境中对低至4 K的运动部件进行固体润滑。本文对低温摩擦学的研究进展进行了综述。综述了碳材料、二硫化钼、聚合物和聚合物基复合材料等固体润滑剂的摩擦学性能及其降温机理。热活化过程引起的摩擦系数随温度的降低而增大。研究转移膜形成机理是提高固体润滑剂摩擦学性能的重要途径。此外,还介绍了在低温条件下运动部件(如球面滑动轴承和滚子轴承)上固体润滑的应用。总结了低温下材料和轴承的摩擦学测试技术,其中低温环境下的环境控制、运动和载荷的实现以及摩擦和磨损的测量是低温摩擦学测试的难点和挑战。特别是,针对固体润滑剂、球面滑动轴承和滚子轴承的摩擦试验和摩擦学研究开发了新的技术和摩擦测试仪,克服了真空冷却和摩擦测量分辨率等方面的限制,集中于摩擦界面的原位观察。这些不仅促进了对低温下摩擦和磨损机制的深入理解,而且还提供了对低温应用中运动部件或组件性能的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Extreme Manufacturing
International Journal of Extreme Manufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
17.70
自引率
6.10%
发文量
83
审稿时长
12 weeks
期刊介绍: The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.
期刊最新文献
Advancements in 3D skin bioprinting: processes, bioinks, applications and sensor integration. Additively manufactured Ti-Ta-Cu alloys for the next-generation load-bearing implants. A novel approach of jet polishing for interior surface of small grooved components using three developed setups Elliptical vibration chiseling: a novel process for texturing ultra-high-aspect-ratio microstructures on the metallic surface Printability disparities in heterogeneous material combinations via laser directed energy deposition: a comparative study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1