Danni Wang, Ye Chen, D. Meza, Y. Wang, Jonathan T. C. Liu
{"title":"Development and optimization of a line-scanned dual-axis confocal (LS-DAC) microscope for high-speed pathology","authors":"Danni Wang, Ye Chen, D. Meza, Y. Wang, Jonathan T. C. Liu","doi":"10.1117/12.2057743","DOIUrl":null,"url":null,"abstract":"We have developed a line-scanned dual-axis confocal (LS-DAC) microscope with subcellular resolution suitable for real time diagnostic imaging at shallow depths. This design serves as a benchtop prototype for a handheld version of the LS-DAC intended for rapid point-of-care pathology. We have assessed the performance trade-offs between the LS-DAC and a point-scanned dual-axis confocal (PS-DAC) microscope via diffraction-theory analysis, Monte-Carlo simulations, and characterization experiments with phantoms and fresh tissues. In addition, we are exploring the use of a sCMOS detector array and rapid 3D deconvolution to improve the sensitivity and resolution of our LS-DAC microscope.","PeriodicalId":75242,"journal":{"name":"Translational biophotonics","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2057743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We have developed a line-scanned dual-axis confocal (LS-DAC) microscope with subcellular resolution suitable for real time diagnostic imaging at shallow depths. This design serves as a benchtop prototype for a handheld version of the LS-DAC intended for rapid point-of-care pathology. We have assessed the performance trade-offs between the LS-DAC and a point-scanned dual-axis confocal (PS-DAC) microscope via diffraction-theory analysis, Monte-Carlo simulations, and characterization experiments with phantoms and fresh tissues. In addition, we are exploring the use of a sCMOS detector array and rapid 3D deconvolution to improve the sensitivity and resolution of our LS-DAC microscope.