Analysis of Self-heating of a SiGe HBT Designed for RF Applications According to the Percentage of Germanium

A. Boulgheb, M. Lakhdara, N. Kherief, S. Latreche
{"title":"Analysis of Self-heating of a SiGe HBT Designed for RF Applications According to the Percentage of Germanium","authors":"A. Boulgheb, M. Lakhdara, N. Kherief, S. Latreche","doi":"10.21272/jnep.12(6).06001","DOIUrl":null,"url":null,"abstract":"The main purpose of this paper is to determine the impact of germanium percentage within the base of a SiGe heterojunction bipolar transistor (HBT) in order to analyze the effect of the device self-heating. We use the COMSOL Multiphysics commercial software. The model links the semiconductor module to the HTS (Heat Transfer in Solids) module. This allows to simulate the temperature distribution across the SiGe HBT device for germanium levels ranging from x  10 %, 20 % to x  30 %. We first determine the static gain () of the SiGe HBT by varying the percentages of germanium. In addition, we analyze the heat distribution on the component surface for the three considered levels of germanium in order to record the maximum temperature Tmax in the device. Indeed, for x  10 %, the maximum temperature is Tmax  377 K and is close to the base-collector junction. When the germanium fraction in the SiGe alloy is increased (x  20 %), the maximum temperature of self-heating decreases (Tmax  366 K), while for x  30 % the temperature of self-heating decreases more (Tmax  354 K) and it spreads over the entire component. This phenomenon degrades seriously the electrical performances of the HBT.","PeriodicalId":16514,"journal":{"name":"Journal of Nano- and Electronic Physics","volume":"25 1","pages":"06001-1-06001-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nano- and Electronic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21272/jnep.12(6).06001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The main purpose of this paper is to determine the impact of germanium percentage within the base of a SiGe heterojunction bipolar transistor (HBT) in order to analyze the effect of the device self-heating. We use the COMSOL Multiphysics commercial software. The model links the semiconductor module to the HTS (Heat Transfer in Solids) module. This allows to simulate the temperature distribution across the SiGe HBT device for germanium levels ranging from x  10 %, 20 % to x  30 %. We first determine the static gain () of the SiGe HBT by varying the percentages of germanium. In addition, we analyze the heat distribution on the component surface for the three considered levels of germanium in order to record the maximum temperature Tmax in the device. Indeed, for x  10 %, the maximum temperature is Tmax  377 K and is close to the base-collector junction. When the germanium fraction in the SiGe alloy is increased (x  20 %), the maximum temperature of self-heating decreases (Tmax  366 K), while for x  30 % the temperature of self-heating decreases more (Tmax  354 K) and it spreads over the entire component. This phenomenon degrades seriously the electrical performances of the HBT.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于锗含量的射频应用SiGe HBT自热分析
本文的主要目的是确定锗在SiGe异质结双极晶体管(HBT)基极内的百分比的影响,以分析器件自热的影响。我们使用COMSOL Multiphysics商业软件。该模型将半导体模块连接到HTS(固体传热)模块。这允许模拟锗水平范围从x10%,20%到x30%的SiGe HBT器件的温度分布。我们首先通过改变锗的百分比来确定SiGe HBT的静态增益()。此外,为了记录器件内的最高温度Tmax,我们分析了三种锗水平下元件表面的热分布。事实上,对于x10%,最高温度为Tmax377 K,接近基极-集电极结。当锗含量增加(x20%)时,SiGe合金的最高自热温度降低(Tmax366 K),而当x30%时,自热温度降低更多(Tmax354 K),并扩散到整个部件。这种现象严重降低了HBT的电性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of Epoxy-polyester Nanocomposite Materials with Improved Physical and Mechanical Properties for Increasing Transport Vehicle Reliability Influence of Tunable Work Function on SOI-based DMG Multi-channel Junctionless Thin Film Transistor Theoretical Study of Photo-Luminescence Emission Using the Line Shape Function for Semiconductor Quantum Dots First Principle Study and Optimal Doping for High Thermoelectric Performance of TaXSn Materials (X = Co, Ir and Rh) Chemical Approach Based ZnS-ZnO Nanocomposite Synthesis and Assessment of their Structural, Morphological and Photocatalytic Properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1