{"title":"Computerized Performance Monitoring System for Turboexpander Brake Compressor","authors":"Vadim Goryachikh, Fahad Alghamdi, Abdulrahman Takrouni","doi":"10.2523/iptc-22602-ms","DOIUrl":null,"url":null,"abstract":"\n Natural gas liquid (NGL) production facilities, typically, utilize turbo-expander-brake compressor (TE) to generate cold for C2+ separation from the natural gas by isentropic expansion of feed stream and use energy generated by expansion to compress residue gas.\n Experience shows that during operational phase TE can exposed to operation outside of design window that may lead to machine integrity loss and consequent impact on production. At the same time, there is a lack of performance indicators that help operator to monitor operating window of the machine and proactively identify performance deterioration.\n For instance, TE brake compressor side is always equipped with anti-surge protection system, including surge deviation alarms and trip. However, there is often gap in monitoring deviation from stonewall region. At the same time, in some of the designs (2x50% machines) likelihood of running brake compressor in stonewall is high during one machine trip or train start-up, turndown operating modes.","PeriodicalId":11027,"journal":{"name":"Day 3 Wed, February 23, 2022","volume":"82 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, February 23, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2523/iptc-22602-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Natural gas liquid (NGL) production facilities, typically, utilize turbo-expander-brake compressor (TE) to generate cold for C2+ separation from the natural gas by isentropic expansion of feed stream and use energy generated by expansion to compress residue gas.
Experience shows that during operational phase TE can exposed to operation outside of design window that may lead to machine integrity loss and consequent impact on production. At the same time, there is a lack of performance indicators that help operator to monitor operating window of the machine and proactively identify performance deterioration.
For instance, TE brake compressor side is always equipped with anti-surge protection system, including surge deviation alarms and trip. However, there is often gap in monitoring deviation from stonewall region. At the same time, in some of the designs (2x50% machines) likelihood of running brake compressor in stonewall is high during one machine trip or train start-up, turndown operating modes.