Kingsley Onyekachi Anyanwu, H. O. Nzei, B. C. Agwah, P. C. Eze, Vi Ehirim
{"title":"A Sustainable Approach to Steel Scrap Recycling and Management (Nigeria as Case Study)","authors":"Kingsley Onyekachi Anyanwu, H. O. Nzei, B. C. Agwah, P. C. Eze, Vi Ehirim","doi":"10.54392/irjmt2311","DOIUrl":null,"url":null,"abstract":"This study has considered six steel scrap recycling plants, tagged A, B, C, D, E, F. The production process for each of the plants considered was separately observed and recorded. The investigation report revealed that none of the plant was following the due process involved in modern steel scrap recycling. Hence, a sustainable production flow system, deemed to be effective is proposed in this paper. The production data of each section was collected alongside the manpower and pollution control data. The data were analyzed mathematically using the models developed in this study. From the results obtained, pollution control was least in melting section with pollution control index of 33.8%, and highest in heat treatment with index of 51.9%. Comparatively, pollution control was least (37%) in plant A and highest (50.6%) in plant F. Also, manpower was least (32.4%) in plant A and highest (44.6%) in plant E. Mechanization was least (55.4%) in plant E and highest (73.2%) in plant B. Findings further indicated that melting section was running almost full capacity in Plant E (348 against 350 tons per day) and Heat treatment section was also running almost full capacity (342 against 350 tons per day in Plant C). The rest were running much below their design capacities.","PeriodicalId":14412,"journal":{"name":"International Research Journal of Multidisciplinary Technovation","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Research Journal of Multidisciplinary Technovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54392/irjmt2311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study has considered six steel scrap recycling plants, tagged A, B, C, D, E, F. The production process for each of the plants considered was separately observed and recorded. The investigation report revealed that none of the plant was following the due process involved in modern steel scrap recycling. Hence, a sustainable production flow system, deemed to be effective is proposed in this paper. The production data of each section was collected alongside the manpower and pollution control data. The data were analyzed mathematically using the models developed in this study. From the results obtained, pollution control was least in melting section with pollution control index of 33.8%, and highest in heat treatment with index of 51.9%. Comparatively, pollution control was least (37%) in plant A and highest (50.6%) in plant F. Also, manpower was least (32.4%) in plant A and highest (44.6%) in plant E. Mechanization was least (55.4%) in plant E and highest (73.2%) in plant B. Findings further indicated that melting section was running almost full capacity in Plant E (348 against 350 tons per day) and Heat treatment section was also running almost full capacity (342 against 350 tons per day in Plant C). The rest were running much below their design capacities.