Quantum-Dynamical Theory of Electron Exchange Correlation

B. Ritchie, C. Weatherford
{"title":"Quantum-Dynamical Theory of Electron Exchange Correlation","authors":"B. Ritchie, C. Weatherford","doi":"10.1155/2013/497267","DOIUrl":null,"url":null,"abstract":"The relationship between the spin of an individual electron and Fermi-Dirac statistics (FDS), which is obeyed by electrons in the aggregate, is elucidated. The relationship depends on the use of spin-dependent quantum trajectories (SDQT) to evaluate Coulomb’s law between any two electrons as an instantaneous interaction in space and time rather than as a quantum-mean interaction in the form of screening and exchange potentials. Hence FDS depends in an ab initio sense on the inference of SDQT from Dirac’s equation, which provides for relativistic Lorentz invariance and a permanent magnetic moment (or spin) in the electron’s equation of motion. Schroedinger’s time-dependent equation can be used to evaluate the SDQT in the nonrelativistic regime of electron velocity. Remarkably FDS is a relativistic property of an ensemble of electron, even though it is of order in the nonrelativistic limit, in agreement with experimental observation. Finally it is shown that covalent versus separated-atoms limits can be characterized by the SDQT. As an example of the use of SDQT in a canonical structure problem, the energies of the 1Σg and 3Σu states of H2 are calculated and compared with the accurate variational energies of Kolos and Wolniewitz.","PeriodicalId":7371,"journal":{"name":"Advances in Physical Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physical Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/497267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The relationship between the spin of an individual electron and Fermi-Dirac statistics (FDS), which is obeyed by electrons in the aggregate, is elucidated. The relationship depends on the use of spin-dependent quantum trajectories (SDQT) to evaluate Coulomb’s law between any two electrons as an instantaneous interaction in space and time rather than as a quantum-mean interaction in the form of screening and exchange potentials. Hence FDS depends in an ab initio sense on the inference of SDQT from Dirac’s equation, which provides for relativistic Lorentz invariance and a permanent magnetic moment (or spin) in the electron’s equation of motion. Schroedinger’s time-dependent equation can be used to evaluate the SDQT in the nonrelativistic regime of electron velocity. Remarkably FDS is a relativistic property of an ensemble of electron, even though it is of order in the nonrelativistic limit, in agreement with experimental observation. Finally it is shown that covalent versus separated-atoms limits can be characterized by the SDQT. As an example of the use of SDQT in a canonical structure problem, the energies of the 1Σg and 3Σu states of H2 are calculated and compared with the accurate variational energies of Kolos and Wolniewitz.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电子交换相关的量子动力学理论
阐明了单个电子的自旋与费米-狄拉克统计量(FDS)之间的关系。这种关系依赖于使用自旋依赖量子轨迹(SDQT)来评估任意两个电子之间的库仑定律,将其作为空间和时间上的瞬时相互作用,而不是作为筛选和交换势形式的量子平均相互作用。因此,FDS在从头算意义上依赖于SDQT从狄拉克方程的推断,狄拉克方程提供了相对论性洛伦兹不变性和电子运动方程中的永久磁矩(或自旋)。薛定谔的时变方程可以用来计算电子速度的非相对论状态下的SDQT。值得注意的是,FDS是电子系综的相对论性性质,尽管它在非相对论性极限下是有序的,这与实验观察一致。最后证明了共价与分离原子的界限可以用SDQT来表征。作为在典型结构问题中使用SDQT的一个例子,计算了H2的1Σg和3Σu态的能量,并与Kolos和Wolniewitz的精确变分能量进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Solution of the Rovibrational Schrödinger Equation of a Molecule Using the Volterra Integral Equation Enhancement of Electrochemical Performance of Bilirubin Oxidase Modified Gas Diffusion Biocathode by Porphyrin Precursor Organic Compounds Based on (E)-N-Aryl-2-ethene-sulfonamide as Microtubule Targeted Agents in Prostate Cancer: QSAR Study Methylene Blue Photocatalytic Degradation under Visible Irradiation on In2S3 Synthesized by Chemical Bath Deposition Synthesis and Characterization of System In(O,OH)S/i-ZnO/n+-ZnO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1