B. Mößner, Christian Riegger, Arthur Bernhardt, Ilia Petrov
{"title":"bloomRF: On Performing Range-Queries in Bloom-Filters with Piecewise-Monotone Hash Functions and Prefix Hashing","authors":"B. Mößner, Christian Riegger, Arthur Bernhardt, Ilia Petrov","doi":"10.48550/arXiv.2207.04789","DOIUrl":null,"url":null,"abstract":"We introduce bloomRF as a unified method for approximate membership testing that supports both point- and range-queries. As a first core idea, bloomRF introduces novel prefix hashing to efficiently encode range information in the hash-code of the key itself. As a second key concept, bloomRF proposes novel piecewise-monotone hash-functions that preserve local order and support fast range-lookups with fewer memory accesses. bloomRF has near-optimal space complexity and constant query complexity. Although, bloomRF is designed for integer domains, it supports floating-points, and can serve as a multi-attribute filter. The evaluation in RocksDB and in a standalone library shows that it is more efficient and outperforms existing point-range-filters by up to 4x across a range of settings and distributions, while keeping the false-positive rate low.","PeriodicalId":88813,"journal":{"name":"Advances in database technology : proceedings. International Conference on Extending Database Technology","volume":"22 1","pages":"131-143"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in database technology : proceedings. International Conference on Extending Database Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2207.04789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce bloomRF as a unified method for approximate membership testing that supports both point- and range-queries. As a first core idea, bloomRF introduces novel prefix hashing to efficiently encode range information in the hash-code of the key itself. As a second key concept, bloomRF proposes novel piecewise-monotone hash-functions that preserve local order and support fast range-lookups with fewer memory accesses. bloomRF has near-optimal space complexity and constant query complexity. Although, bloomRF is designed for integer domains, it supports floating-points, and can serve as a multi-attribute filter. The evaluation in RocksDB and in a standalone library shows that it is more efficient and outperforms existing point-range-filters by up to 4x across a range of settings and distributions, while keeping the false-positive rate low.