Parallel implementation of an iterative PCA algorithm for hyperspectral images on a manycore platform

R. Lazcano, D. Madroñal, H. Fabelo, S. Ortega, R. Salvador, G. Callicó, E. Juárez, C. Sanz
{"title":"Parallel implementation of an iterative PCA algorithm for hyperspectral images on a manycore platform","authors":"R. Lazcano, D. Madroñal, H. Fabelo, S. Ortega, R. Salvador, G. Callicó, E. Juárez, C. Sanz","doi":"10.1109/DASIP.2017.8122111","DOIUrl":null,"url":null,"abstract":"This paper presents a study of the par alle lization possibilities of a Non-Linear Iterative Partial Least Squares algorithm and its adaptation to a Massively Parallel Processor Array manycore architecture, which assembles 256 cores distributed over 16 clusters. The aim of this work is twofold: first, to test the behavior of iterative, complex algorithms in a manycore architecture; and, secondly, to achieve real-time processing of hyperspectral images, which is fixed by the image capture rate of the hyperspectral sensor. Real-time is a challenging objective, as hyperspectral images are composed of extensive volumes of spectral information. This issue is usually addressed by reducing the image size prior to the processing phase itself. Consequently, this paper proposes an analysis of the intrinsic parallelism of the algorithm and its subsequent implementation on a manycore architecture. As a result, an average speedup of 13 has been achieved when compared to the sequential version. Additionally, this implementation has been compared with other state-of-the-art applications, outperforming them in terms of performance.","PeriodicalId":6637,"journal":{"name":"2017 Conference on Design and Architectures for Signal and Image Processing (DASIP)","volume":"1 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Conference on Design and Architectures for Signal and Image Processing (DASIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASIP.2017.8122111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents a study of the par alle lization possibilities of a Non-Linear Iterative Partial Least Squares algorithm and its adaptation to a Massively Parallel Processor Array manycore architecture, which assembles 256 cores distributed over 16 clusters. The aim of this work is twofold: first, to test the behavior of iterative, complex algorithms in a manycore architecture; and, secondly, to achieve real-time processing of hyperspectral images, which is fixed by the image capture rate of the hyperspectral sensor. Real-time is a challenging objective, as hyperspectral images are composed of extensive volumes of spectral information. This issue is usually addressed by reducing the image size prior to the processing phase itself. Consequently, this paper proposes an analysis of the intrinsic parallelism of the algorithm and its subsequent implementation on a manycore architecture. As a result, an average speedup of 13 has been achieved when compared to the sequential version. Additionally, this implementation has been compared with other state-of-the-art applications, outperforming them in terms of performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高光谱图像迭代PCA算法在多核平台上的并行实现
本文研究了非线性迭代偏最小二乘算法的并行化可能性及其对大规模并行处理器阵列多核架构的适应性,该架构由分布在16个集群上的256个核组成。这项工作的目的是双重的:首先,在多核架构中测试迭代的复杂算法的行为;其次,实现高光谱图像的实时处理,这是由高光谱传感器的图像捕获率决定的。实时是一个具有挑战性的目标,因为高光谱图像是由大量的光谱信息组成的。这个问题通常是通过在处理阶段之前减小图像尺寸来解决的。因此,本文分析了该算法的内在并行性及其在多核架构上的后续实现。因此,与顺序版本相比,平均加速提高了13。此外,还将此实现与其他最先进的应用程序进行了比较,在性能方面优于它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D tomography back-projection parallelization on FPGAs using opencl An efficient framework for design and assessment of arithmetic operators with Reduced-Precision Redundancy Adaptive space-time structural coherence for selective imaging Proposition and evaluation of a real-time generic architecture for a laser stripe detection system on FPGA Demonstrator of a fingerprint recognition algorithm into a low-power microcontroller
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1