The trend of emerging non-volatile TCAM for parallel search and AI applications

Chip Pub Date : 2022-06-01 DOI:10.1016/j.chip.2022.100012
Ke-Ji Zhou , Chen Mu , Bo Wen , Xu-Meng Zhang , Guang-Jian Wu , Can Li , Hao Jiang , Xiao-Yong Xue , Shang Tang , Chi-Xiao Chen , Qi Liu
{"title":"The trend of emerging non-volatile TCAM for parallel search and AI applications","authors":"Ke-Ji Zhou ,&nbsp;Chen Mu ,&nbsp;Bo Wen ,&nbsp;Xu-Meng Zhang ,&nbsp;Guang-Jian Wu ,&nbsp;Can Li ,&nbsp;Hao Jiang ,&nbsp;Xiao-Yong Xue ,&nbsp;Shang Tang ,&nbsp;Chi-Xiao Chen ,&nbsp;Qi Liu","doi":"10.1016/j.chip.2022.100012","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we review the recent trends in parallel search and artificial intelligence (AI) applications using emerging non-volatile ternary content addressable memory (TCAM). Firstly, the principle and development of four typical emerging memory used to implement the non-volatile TCAM are discussed. Then, we analyze the principle and challenges of SRAM-based TCAM and non-volatile TCAM for the parallel search. Finally, the research trends and challenges of non-volatile TCAM used for AI application are presented, which include computer-science oriented and neuroscience oriented computing.</p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"1 2","pages":"Article 100012"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2709472322000107/pdfft?md5=007c1e9740da5b53bb4db6aadf4e40df&pid=1-s2.0-S2709472322000107-main.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2709472322000107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we review the recent trends in parallel search and artificial intelligence (AI) applications using emerging non-volatile ternary content addressable memory (TCAM). Firstly, the principle and development of four typical emerging memory used to implement the non-volatile TCAM are discussed. Then, we analyze the principle and challenges of SRAM-based TCAM and non-volatile TCAM for the parallel search. Finally, the research trends and challenges of non-volatile TCAM used for AI application are presented, which include computer-science oriented and neuroscience oriented computing.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
并行搜索和人工智能应用中出现的非易失性TCAM的趋势
在本文中,我们回顾了使用新兴的非易失性三元内容可寻址存储器(TCAM)的并行搜索和人工智能(AI)应用的最新趋势。首先,讨论了用于实现非易失性TCAM的四种典型新兴存储器的原理和发展。然后,分析了基于sram的TCAM和非易失性TCAM并行搜索的原理和挑战。最后,提出了用于人工智能应用的非易失性TCAM的研究趋势和挑战,包括面向计算机科学和面向神经科学的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Q-enhancement of piezoelectric micro-oven-controlled MEMS resonators using honeycomb lattice phononic crystals Challenges and recent advances in HfO2-based ferroelectric films for non-volatile memory applications Channel-bias-controlled reconfigurable silicon nanowire transistors via an asymmetric electrode contact strategy Suspended nanomembrane silicon photonic integrated circuits Electrical performance and reliability analysis of vertical gallium nitride Schottky barrier diodes with dual-ion implanted edge termination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1