V. Maksimović, M. Stoiljković, V. Pavkov, J. Ciganovic, I. Cvijović-Alagić
{"title":"Arc Plasma Deposition of TiO2 Nanoparticles from Colloidal Solution","authors":"V. Maksimović, M. Stoiljković, V. Pavkov, J. Ciganovic, I. Cvijović-Alagić","doi":"10.30544/587","DOIUrl":null,"url":null,"abstract":"Surface modifications of metallic biomaterials can in great merit, improve the properties of the hard-tissue implants and in that way contribute to the success of the surgical implantation process. Coating deposition stands out as one of the many surface-modifying techniques that can be used to improve implant surface properties and, in turn, induce successful osseointegration. Deposition of the TiO2 layer on the surface of the metallic implants has a great potential to enhance not only their osseointegration ability but also their biocompatibility and corrosion resistance. In the present study, the possibility of successful deposition of the TiO2 layer on the surface of commercially pure titanium (CP-Ti), as the most commonly used metallic implant material, by spraying the colloidal nanoparticles aqueous solution in the electric discharge plasma at atmospheric pressure was investigated. To characterize the colloidal TiO2 nanoparticle solution, used for the coating deposition process, transmission electron microscopy (TEM) was utilized, while scanning electron microscopy (SEM) and optical profilometry were used to investigate the deposited surface layer morphology and quality. Estimation of the deposited film quality and texture was used to confirm that the arc plasma deposition technique can be successfully used as an advanced and easy-to-apply method for coating the metallic implant material surface with the bioactive TiO2 layer which favors the osseointegration process through the improvement of the implant surface properties. The TiO2 coating was successfully deposited using the arc plasma deposition technique and covered the entire surface of the CP-Ti substrate without any signs of coating cracking or detachment.","PeriodicalId":18466,"journal":{"name":"Metallurgical and Materials Engineering","volume":"130 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30544/587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Surface modifications of metallic biomaterials can in great merit, improve the properties of the hard-tissue implants and in that way contribute to the success of the surgical implantation process. Coating deposition stands out as one of the many surface-modifying techniques that can be used to improve implant surface properties and, in turn, induce successful osseointegration. Deposition of the TiO2 layer on the surface of the metallic implants has a great potential to enhance not only their osseointegration ability but also their biocompatibility and corrosion resistance. In the present study, the possibility of successful deposition of the TiO2 layer on the surface of commercially pure titanium (CP-Ti), as the most commonly used metallic implant material, by spraying the colloidal nanoparticles aqueous solution in the electric discharge plasma at atmospheric pressure was investigated. To characterize the colloidal TiO2 nanoparticle solution, used for the coating deposition process, transmission electron microscopy (TEM) was utilized, while scanning electron microscopy (SEM) and optical profilometry were used to investigate the deposited surface layer morphology and quality. Estimation of the deposited film quality and texture was used to confirm that the arc plasma deposition technique can be successfully used as an advanced and easy-to-apply method for coating the metallic implant material surface with the bioactive TiO2 layer which favors the osseointegration process through the improvement of the implant surface properties. The TiO2 coating was successfully deposited using the arc plasma deposition technique and covered the entire surface of the CP-Ti substrate without any signs of coating cracking or detachment.