Should Forecasters Use Real-Time Data to Evaluate Leading Indicator Models for GDP Prediction? German Evidence

IF 1.2 4区 经济学 Q3 ECONOMICS German Economic Review Pub Date : 2019-11-01 DOI:10.1111/geer.12163
Katja Heinisch, Rolf Scheufele
{"title":"Should Forecasters Use Real-Time Data to Evaluate Leading Indicator Models for GDP Prediction? German Evidence","authors":"Katja Heinisch, Rolf Scheufele","doi":"10.1111/geer.12163","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we investigate whether differences exist among forecasts using real-time or latest-available data to predict gross domestic product (GDP). We employ mixed-frequency models and real-time data to reassess the role of surveys and financial data relative to industrial production and orders in Germany. Although we find evidence that forecast characteristics based on real-time and final data releases differ, we also observe minimal impacts on the relative forecasting performance of indicator models. However, when obtaining the optimal combination of soft and hard data, the use of final release data may understate the role of survey information.","PeriodicalId":46476,"journal":{"name":"German Economic Review","volume":"1 1","pages":"e170 - e200"},"PeriodicalIF":1.2000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"German Economic Review","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1111/geer.12163","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 13

Abstract

Abstract In this paper, we investigate whether differences exist among forecasts using real-time or latest-available data to predict gross domestic product (GDP). We employ mixed-frequency models and real-time data to reassess the role of surveys and financial data relative to industrial production and orders in Germany. Although we find evidence that forecast characteristics based on real-time and final data releases differ, we also observe minimal impacts on the relative forecasting performance of indicator models. However, when obtaining the optimal combination of soft and hard data, the use of final release data may understate the role of survey information.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测者应该使用实时数据来评估GDP预测的领先指标模型吗?德国的证据
摘要本文研究了实时数据和最新数据在预测国内生产总值(GDP)时是否存在差异。我们采用混合频率模型和实时数据来重新评估与德国工业生产和订单相关的调查和财务数据的作用。虽然我们发现了基于实时和最终数据发布的预测特征不同的证据,但我们也观察到指标模型对相对预测性能的影响很小。然而,在获得软硬数据的最佳组合时,使用最终发布的数据可能会低估调查信息的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
9.10%
发文量
17
期刊介绍: German Economic Review, the official publication of the German Economic Association (Verein für Socialpolitik), is an international journal publishing original and rigorous research of general interest in a broad range of economic disciplines, including: - macro- and microeconomics - economic policy - international economics - public economics - finance - business administration The scope of research approaches includes theoretical, empirical and experimental work. Innovative and thought-provoking contributions, in particular from younger authors, are especially welcome.
期刊最新文献
Demographic Data for the Pre-Statistical Age (Late Sixteenth Century to 1870) Measuring Historical Inequality in Germany Causes of German Inventiveness, 1815–1990. What We Can Learn from Patent Statistics The Universe of Germany’s Foreign Trade Prior to World War I Data Sources on the 19th and Early 20th Century German Capital Market: Challenges and Opportunities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1