{"title":"A low-power 10-bit continuous-time CMOS Sigma Delta A/D converter","authors":"J. Nielsen, E. Bruun","doi":"10.1109/ISCAS.2004.1328220","DOIUrl":null,"url":null,"abstract":"This paper presents the design of a third-order low-pass /spl Sigma//spl Delta/ analog-to-digital converter (ADC) employing a continuous-time (CT) loop filter. The loop filter is implemented using G/sub m/ - C integrators, where the transconductors are implemented using CMOS transistors only. System level as well as transistor level design issues for power efficiency is discussed. A prototype /spl Sigma//spl Delta/ ADC intended for weak biological signals restricted to bandwidths below 4 kHz has been manufactured in a standard 0.35 /spl mu/m CMOS technology. The ADC has a measured resolution of 10 bits and a dynamic range (DR) of 67 dB at a sampling rate of f/sub s/ = 1.4 MHz, while drawing a bias current of 60 /spl mu/A from a modest supply voltage of 1.8 V, thus consuming 108 /spl mu/W of power.","PeriodicalId":91083,"journal":{"name":"IEEE International Symposium on Circuits and Systems proceedings. IEEE International Symposium on Circuits and Systems","volume":"7 1","pages":"417-420"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on Circuits and Systems proceedings. IEEE International Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2004.1328220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper presents the design of a third-order low-pass /spl Sigma//spl Delta/ analog-to-digital converter (ADC) employing a continuous-time (CT) loop filter. The loop filter is implemented using G/sub m/ - C integrators, where the transconductors are implemented using CMOS transistors only. System level as well as transistor level design issues for power efficiency is discussed. A prototype /spl Sigma//spl Delta/ ADC intended for weak biological signals restricted to bandwidths below 4 kHz has been manufactured in a standard 0.35 /spl mu/m CMOS technology. The ADC has a measured resolution of 10 bits and a dynamic range (DR) of 67 dB at a sampling rate of f/sub s/ = 1.4 MHz, while drawing a bias current of 60 /spl mu/A from a modest supply voltage of 1.8 V, thus consuming 108 /spl mu/W of power.