V. Korbut, V. Mileikovskyi, V. Dziubenko, I. Sachenko
{"title":"The use of the interaction of convex wall jets for ventilation with variable air flow","authors":"V. Korbut, V. Mileikovskyi, V. Dziubenko, I. Sachenko","doi":"10.32347/2409-2606.2021.37.7-12","DOIUrl":null,"url":null,"abstract":"The most energy efficient ventilation and air-conditioning is variable air flow (VAV) depending on the needs of a room. To avoid broken air circulation by gravitational forces, the most of air diffusers should change geometrical shape and sizes using additionall automation of them. In contrast, high stability of a scheme of air exchange organization with air supply over a working zone by convex wall jets that interact with each other under conditions of variable air flow, is confirmed. This scheme is useful in cases where it is impossible to supply air directly to the working zone. Simulation of the air exchange organization in an exhibition hall of International Exhibition Centre in Kyiv with ventilation at a variable air volume (VAV) in the entire possible range of performance control has been performed. The floor area is 5258 m2, the height is 19 m. The outdoor air-flow at design conditions (100 % load) is 21.667 m3/s (78000 m3/h). The minimum load corresponds to the absence of solar radiation and only some people in the room. The minimum air-flow is 25 % of the design one. The proposal air scheme is single-zonal using 24 diffusers PES-D-8-10/15-0,9 4 m above the floor and air removal from the upper zone. The air distributor have a diameter of a cylindrical surface and an inlet branch pipe of 8 dm (800 mm). There are 10 rows of nozzles at an angle π/12 (15 °) to the horizon on each distributor. The total area of the air outlet on them is equal to 0.9 of the cross-sectional area of the inlet pipes. Due to forces of the vacuum holding of jets on the wall surfaces, the influence of gravitational forces is significantly reduced. This avoids the automation of air distribution devices to stabilize the scheme of air circulation in the room by gravitational forces. It is enough to install valves with actuators on branches of a network of air ducts. Thus, the economic benefit of the system is confirmed both at the stage of installing and during operation.","PeriodicalId":23499,"journal":{"name":"Ventilation, Illumination and Heat Gas Supply","volume":"111 1","pages":"7-12"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ventilation, Illumination and Heat Gas Supply","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32347/2409-2606.2021.37.7-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The most energy efficient ventilation and air-conditioning is variable air flow (VAV) depending on the needs of a room. To avoid broken air circulation by gravitational forces, the most of air diffusers should change geometrical shape and sizes using additionall automation of them. In contrast, high stability of a scheme of air exchange organization with air supply over a working zone by convex wall jets that interact with each other under conditions of variable air flow, is confirmed. This scheme is useful in cases where it is impossible to supply air directly to the working zone. Simulation of the air exchange organization in an exhibition hall of International Exhibition Centre in Kyiv with ventilation at a variable air volume (VAV) in the entire possible range of performance control has been performed. The floor area is 5258 m2, the height is 19 m. The outdoor air-flow at design conditions (100 % load) is 21.667 m3/s (78000 m3/h). The minimum load corresponds to the absence of solar radiation and only some people in the room. The minimum air-flow is 25 % of the design one. The proposal air scheme is single-zonal using 24 diffusers PES-D-8-10/15-0,9 4 m above the floor and air removal from the upper zone. The air distributor have a diameter of a cylindrical surface and an inlet branch pipe of 8 dm (800 mm). There are 10 rows of nozzles at an angle π/12 (15 °) to the horizon on each distributor. The total area of the air outlet on them is equal to 0.9 of the cross-sectional area of the inlet pipes. Due to forces of the vacuum holding of jets on the wall surfaces, the influence of gravitational forces is significantly reduced. This avoids the automation of air distribution devices to stabilize the scheme of air circulation in the room by gravitational forces. It is enough to install valves with actuators on branches of a network of air ducts. Thus, the economic benefit of the system is confirmed both at the stage of installing and during operation.