{"title":"Development of the Polyphenol Compounds from Plant Raw Materials by the Cell Micropropagation IN VITRO Method","authors":"V. Popov, Victoria Aksentyeva","doi":"10.29141/2500-1922-2022-7-4-12","DOIUrl":null,"url":null,"abstract":"One of the ways to design polyfunctional ingredients that determine the functional properties of food products are complex food additives consisting of valuable plant raw materials. The additives quality depends on the used raw materials adequacy, time and collection place, and the plant cultivation conditions. The traditional plantation method requires significant costs to obtain secondary metabolites determining physiological plant materials value. The research aim is to obtain polyphenolic compounds from phyto-raw materials by microclonal cell propagation under sterile laboratory conditions. The leaves and berries cells of cowberries and cranberries containing a significant number of polyphenols are the research objects. For example, cranberries growing in the south of the Tyumen region contain anthocyanins 97.8 mg/100 g and leukoanthocyanins 459.6 mg/100 g, and berries growing in the Arctic territories of the Yamalo-Nenets Autonomous Okrug contain 224.7 and 480.2 mg/100 g, respectively. At the initial stage, the researchers sterilized objects, instruments, and equipment. They determined the sterilization duration experimentally. The study revealed that with a longer sterilization duration, there was a change in color and an increase in cell toxicity, with a minimum duration, pathogenic microorganisms remained in the medium. After sterilization, a man cultured the cells in the light under fluorescent lamps with illumination of 100 mmol quanta/m²; photoperiod of 20 h per day; in nutrient media with an acidity of pH 5.2–5.4; 25 ml in volume; enriched with the auxins and cytokinins hormones. The researchers used Kundu phytohormones to regulate the secondary metabolites synthesis. They utilized Murashige Skoog and Anderson agar media to find the optimal nutrient medium in order to obtain the maximum increase in polyphenolic compounds in plant cells. A man developed the third agar media independently, considering the prospects of an individual approach to the more efficient producers growth.","PeriodicalId":7684,"journal":{"name":"Agro Food Industry Hi-tech","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agro Food Industry Hi-tech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29141/2500-1922-2022-7-4-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
One of the ways to design polyfunctional ingredients that determine the functional properties of food products are complex food additives consisting of valuable plant raw materials. The additives quality depends on the used raw materials adequacy, time and collection place, and the plant cultivation conditions. The traditional plantation method requires significant costs to obtain secondary metabolites determining physiological plant materials value. The research aim is to obtain polyphenolic compounds from phyto-raw materials by microclonal cell propagation under sterile laboratory conditions. The leaves and berries cells of cowberries and cranberries containing a significant number of polyphenols are the research objects. For example, cranberries growing in the south of the Tyumen region contain anthocyanins 97.8 mg/100 g and leukoanthocyanins 459.6 mg/100 g, and berries growing in the Arctic territories of the Yamalo-Nenets Autonomous Okrug contain 224.7 and 480.2 mg/100 g, respectively. At the initial stage, the researchers sterilized objects, instruments, and equipment. They determined the sterilization duration experimentally. The study revealed that with a longer sterilization duration, there was a change in color and an increase in cell toxicity, with a minimum duration, pathogenic microorganisms remained in the medium. After sterilization, a man cultured the cells in the light under fluorescent lamps with illumination of 100 mmol quanta/m²; photoperiod of 20 h per day; in nutrient media with an acidity of pH 5.2–5.4; 25 ml in volume; enriched with the auxins and cytokinins hormones. The researchers used Kundu phytohormones to regulate the secondary metabolites synthesis. They utilized Murashige Skoog and Anderson agar media to find the optimal nutrient medium in order to obtain the maximum increase in polyphenolic compounds in plant cells. A man developed the third agar media independently, considering the prospects of an individual approach to the more efficient producers growth.