Incremental learning of latent structural SVM for weakly supervised image classification

Thibaut Durand, Nicolas Thome, M. Cord, David Picard
{"title":"Incremental learning of latent structural SVM for weakly supervised image classification","authors":"Thibaut Durand, Nicolas Thome, M. Cord, David Picard","doi":"10.1109/ICIP.2014.7025862","DOIUrl":null,"url":null,"abstract":"Visual learning with weak supervision is a promising research area, since it offers the possibility to build large image datasets at reasonable cost. In this paper, we address the problem of weakly supervised object detection, where the goal is to predict the label of the image using object position as latent variable. We propose a new method that builds upon the Latent Structural SVM (LSSVM) formalism. Specifically, we introduce an original coarse-to-fine approach that limits the evolution of the latent parameter subspace. This incremental strategy drives the learning towards better solutions, providing a model with increased predictive accuracy. In addition, this leads to a significant speed up during learning and inference compared to standard sliding window methods. Experiments carried out on Mammal dataset validate the good performances and fast training of the method compared to state-of-the-art works.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"4 1","pages":"4246-4250"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Visual learning with weak supervision is a promising research area, since it offers the possibility to build large image datasets at reasonable cost. In this paper, we address the problem of weakly supervised object detection, where the goal is to predict the label of the image using object position as latent variable. We propose a new method that builds upon the Latent Structural SVM (LSSVM) formalism. Specifically, we introduce an original coarse-to-fine approach that limits the evolution of the latent parameter subspace. This incremental strategy drives the learning towards better solutions, providing a model with increased predictive accuracy. In addition, this leads to a significant speed up during learning and inference compared to standard sliding window methods. Experiments carried out on Mammal dataset validate the good performances and fast training of the method compared to state-of-the-art works.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
弱监督图像分类的潜在结构支持向量机增量学习
弱监督的视觉学习是一个很有前途的研究领域,因为它提供了以合理的成本构建大型图像数据集的可能性。在本文中,我们解决了弱监督目标检测的问题,其目标是使用目标位置作为潜在变量来预测图像的标签。我们提出了一种基于潜在结构支持向量机(LSSVM)形式的新方法。具体来说,我们引入了一种原始的从粗到精的方法来限制潜在参数子空间的演化。这种增量策略将学习推向更好的解决方案,提供具有更高预测准确性的模型。此外,与标准滑动窗口方法相比,这在学习和推理过程中可以显著加快速度。在哺乳动物数据集上进行的实验验证了该方法的良好性能和快速训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Joint source and channel coding of view and rate scalable multi-view video Inter-view consistent hole filling in view extrapolation for multi-view image generation Cost-aware depth map estimation for Lytro camera SVM with feature selection and smooth prediction in images: Application to CAD of prostate cancer Model based clustering for 3D directional features: Application to depth image analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1