Davood Saremian, R. Noorossana, S. Raissi, P. Soleimani
{"title":"Robust Cluster-Based method for monitoring generalized linear profiles in phase I","authors":"Davood Saremian, R. Noorossana, S. Raissi, P. Soleimani","doi":"10.30495/JIEI.2021.1920761.1085","DOIUrl":null,"url":null,"abstract":"Profile monitoring is one of the new statistical quality control methods used to evaluate the functional relationship between the descriptive and response variables to measure the process quality. Most of the studies in this field concern processes whose response variables follow the normal distribution function, but in many industries and services, this assumption is not true. The presence of outliers in the historical data set could have a deleterious effect on phase I parameter estimation. Therefore, in this paper, we propose a robust cluster-based method for estimating the parameters of generalized linear profiles in phase I. In this method, the effect of data contamination on estimating the generalized linear model parameters is reduced and as a result, the performance of T^2 control charts is improved. The performance of this method has been evaluated for two specific modes of generalized linear profiles, including logistic and Poisson profiles, based on a step shift. The simulation results indicate the superiority of this cluster-based method in comparison to the non-clustering method and provide a more accurate estimation of the parameters.","PeriodicalId":37850,"journal":{"name":"Journal of Industrial Engineering International","volume":"18 1","pages":"88-97"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Engineering International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30495/JIEI.2021.1920761.1085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Profile monitoring is one of the new statistical quality control methods used to evaluate the functional relationship between the descriptive and response variables to measure the process quality. Most of the studies in this field concern processes whose response variables follow the normal distribution function, but in many industries and services, this assumption is not true. The presence of outliers in the historical data set could have a deleterious effect on phase I parameter estimation. Therefore, in this paper, we propose a robust cluster-based method for estimating the parameters of generalized linear profiles in phase I. In this method, the effect of data contamination on estimating the generalized linear model parameters is reduced and as a result, the performance of T^2 control charts is improved. The performance of this method has been evaluated for two specific modes of generalized linear profiles, including logistic and Poisson profiles, based on a step shift. The simulation results indicate the superiority of this cluster-based method in comparison to the non-clustering method and provide a more accurate estimation of the parameters.
期刊介绍:
Journal of Industrial Engineering International is an international journal dedicated to the latest advancement of industrial engineering. The goal of this journal is to provide a platform for engineers and academicians all over the world to promote, share, and discuss various new issues and developments in different areas of industrial engineering. All manuscripts must be prepared in English and are subject to a rigorous and fair peer-review process. Accepted articles will immediately appear online. The journal publishes original research articles, review articles, technical notes, case studies and letters to the Editor, including but not limited to the following fields: Operations Research and Decision-Making Models, Production Planning and Inventory Control, Supply Chain Management, Quality Engineering, Applications of Fuzzy Theory in Industrial Engineering, Applications of Stochastic Models in Industrial Engineering, Applications of Metaheuristic Methods in Industrial Engineering.